[ovs-dev] [PATCH 14/15] doc: Convert FAQ to rST

Stephen Finucane stephen at that.guru
Tue Oct 18 20:03:44 UTC 2016


Signed-off-by: Stephen Finucane <stephen at that.guru>
---
 FAQ.md                          | 2158 ---------------------------------------
 FAQ.rst                         | 2091 +++++++++++++++++++++++++++++++++++++
 INSTALL.Fedora.md               |    4 +-
 INSTALL.rst                     |    4 +-
 Makefile.am                     |    2 +-
 README.rst                      |    2 +-
 debian/openvswitch-common.docs  |    2 +-
 rhel/openvswitch-fedora.spec.in |    2 +-
 rhel/openvswitch.spec.in        |    2 +-
 9 files changed, 2100 insertions(+), 2167 deletions(-)
 delete mode 100644 FAQ.md
 create mode 100644 FAQ.rst

diff --git a/FAQ.md b/FAQ.md
deleted file mode 100644
index 19c230c..0000000
--- a/FAQ.md
+++ /dev/null
@@ -1,2158 +0,0 @@
-Frequently Asked Questions
-==========================
-
-Open vSwitch <http://openvswitch.org>
-
-## Contents
-
-- [General](#general)
-- [Releases](#releases)
-- [Terminology](#terminology)
-- [Basic configuration](#basic-configuration)
-- [Implementation Details](#implementation-details)
-- [Performance](#performance)
-- [Configuration Problems](#configuration-problems)
-- [QOS](#qos)
-- [VLANs](#vlans)
-- [VXLANs](#vxlans)
-- [Using OpenFlow](#using-openflow)
-- [Development](#development)
-
-## General
-
-### Q: What is Open vSwitch?
-
-A: Open vSwitch is a production quality open source software switch
-   designed to be used as a vswitch in virtualized server
-   environments.  A vswitch forwards traffic between different VMs on
-   the same physical host and also forwards traffic between VMs and
-   the physical network.  Open vSwitch supports standard management
-   interfaces (e.g. sFlow, NetFlow, IPFIX, RSPAN, CLI), and is open to
-   programmatic extension and control using OpenFlow and the OVSDB
-   management protocol.
-
-   Open vSwitch as designed to be compatible with modern switching
-   chipsets.  This means that it can be ported to existing high-fanout
-   switches allowing the same flexible control of the physical
-   infrastructure as the virtual infrastructure.  It also means that
-   Open vSwitch will be able to take advantage of on-NIC switching
-   chipsets as their functionality matures.
-
-### Q: What virtualization platforms can use Open vSwitch?
-
-A: Open vSwitch can currently run on any Linux-based virtualization
-   platform (kernel 3.10 and newer), including: KVM, VirtualBox, Xen,
-   Xen Cloud Platform, XenServer. As of Linux 3.3 it is part of the
-   mainline kernel.  The bulk of the code is written in platform-
-   independent C and is easily ported to other environments.  We welcome
-   inquires about integrating Open vSwitch with other virtualization
-   platforms.
-
-### Q: How can I try Open vSwitch?
-
-A: The Open vSwitch source code can be built on a Linux system.  You can
-   build and experiment with Open vSwitch on any Linux machine.
-   Packages for various Linux distributions are available on many
-   platforms, including: Debian, Ubuntu, Fedora.
-
-   You may also download and run a virtualization platform that already
-   has Open vSwitch integrated.  For example, download a recent ISO for
-   XenServer or Xen Cloud Platform.  Be aware that the version
-   integrated with a particular platform may not be the most recent Open
-   vSwitch release.
-
-### Q: Does Open vSwitch only work on Linux?
-
-A: No, Open vSwitch has been ported to a number of different operating
-   systems and hardware platforms.  Most of the development work occurs
-   on Linux, but the code should be portable to any POSIX system.  We've
-   seen Open vSwitch ported to a number of different platforms,
-   including FreeBSD, Windows, and even non-POSIX embedded systems.
-
-   By definition, the Open vSwitch Linux kernel module only works on
-   Linux and will provide the highest performance.  However, a userspace
-   datapath is available that should be very portable.
-
-### Q: What's involved with porting Open vSwitch to a new platform or switching ASIC?
-
-A: The [PORTING.rst] document describes how one would go about
-   porting Open vSwitch to a new operating system or hardware platform.
-
-### Q: Why would I use Open vSwitch instead of the Linux bridge?
-
-A: Open vSwitch is specially designed to make it easier to manage VM
-   network configuration and monitor state spread across many physical
-   hosts in dynamic virtualized environments.  Please see
-   [WHY-OVS.rst] for a more detailed description of how Open vSwitch
-   relates to the Linux Bridge.
-
-### Q: How is Open vSwitch related to distributed virtual switches like the VMware vNetwork distributed switch or the Cisco Nexus 1000V?
-
-A: Distributed vswitch applications (e.g., VMware vNetwork distributed
-   switch, Cisco Nexus 1000V) provide a centralized way to configure and
-   monitor the network state of VMs that are spread across many physical
-   hosts.  Open vSwitch is not a distributed vswitch itself, rather it
-   runs on each physical host and supports remote management in a way
-   that makes it easier for developers of virtualization/cloud
-   management platforms to offer distributed vswitch capabilities.
-
-   To aid in distribution, Open vSwitch provides two open protocols that
-   are specially designed for remote management in virtualized network
-   environments: OpenFlow, which exposes flow-based forwarding state,
-   and the OVSDB management protocol, which exposes switch port state.
-   In addition to the switch implementation itself, Open vSwitch
-   includes tools (ovs-ofctl, ovs-vsctl) that developers can script and
-   extend to provide distributed vswitch capabilities that are closely
-   integrated with their virtualization management platform.
-
-### Q: Why doesn't Open vSwitch support distribution?
-
-A: Open vSwitch is intended to be a useful component for building
-   flexible network infrastructure. There are many different approaches
-   to distribution which balance trade-offs between simplicity,
-   scalability, hardware compatibility, convergence times, logical
-   forwarding model, etc. The goal of Open vSwitch is to be able to
-   support all as a primitive building block rather than choose a
-   particular point in the distributed design space.
-
-### Q: How can I contribute to the Open vSwitch Community?
-
-A: You can start by joining the mailing lists and helping to answer
-   questions.  You can also suggest improvements to documentation.  If
-   you have a feature or bug you would like to work on, send a mail to
-   one of the mailing lists:
-
-   http://openvswitch.org/mlists/
-
-### Q: Why can I no longer connect to my OpenFlow controller or OVSDB manager?
-
-A: Starting in OVS 2.4, we switched the default ports to the
-   IANA-specified port numbers for OpenFlow (6633->6653) and OVSDB
-   (6632->6640).  We recommend using these port numbers, but if you
-   cannot, all the programs allow overriding the default port.  See the
-   appropriate man page.
-
-## Releases
-
-### Q: What does it mean for an Open vSwitch release to be LTS (long-term support)?
-
-A: All official releases have been through a comprehensive testing
-   process and are suitable for production use.  Planned releases
-   occur twice a year.  If a significant bug is identified in an
-   LTS release, we will provide an updated release that includes the
-   fix.  Releases that are not LTS may not be fixed and may just be
-   supplanted by the next major release.  The current LTS release is
-   2.3.x.
-
-   For more information on the Open vSwitch release process, please
-   see [release-process.md].
-
-### Q: What Linux kernel versions does each Open vSwitch release work with?
-
-A: The following table lists the Linux kernel versions against which the
-   given versions of the Open vSwitch kernel module will successfully
-   build.  The Linux kernel versions are upstream kernel versions, so
-   Linux kernels modified from the upstream sources may not build in
-   some cases even if they are based on a supported version.  This is
-   most notably true of Red Hat Enterprise Linux (RHEL) kernels, which
-   are extensively modified from upstream.
-
-| Open vSwitch | Linux kernel
-|:------------:|:-------------:
-|    1.4.x     | 2.6.18 to 3.2
-|    1.5.x     | 2.6.18 to 3.2
-|    1.6.x     | 2.6.18 to 3.2
-|    1.7.x     | 2.6.18 to 3.3
-|    1.8.x     | 2.6.18 to 3.4
-|    1.9.x     | 2.6.18 to 3.8
-|    1.10.x    | 2.6.18 to 3.8
-|    1.11.x    | 2.6.18 to 3.8
-|    2.0.x     | 2.6.32 to 3.10
-|    2.1.x     | 2.6.32 to 3.11
-|    2.3.x     | 2.6.32 to 3.14
-|    2.4.x     | 2.6.32 to 4.0
-|    2.5.x     | 2.6.32 to 4.3
-|    2.6.x     | 3.10 to 4.7
-
-   Open vSwitch userspace should also work with the Linux kernel module
-   built into Linux 3.3 and later.
-
-   Open vSwitch userspace is not sensitive to the Linux kernel version.
-   It should build against almost any kernel, certainly against 2.6.32
-   and later.
-
-### Q: Are all features available with all datapaths?
-
-A: Open vSwitch supports different datapaths on different platforms.  Each
-   datapath has a different feature set: the following tables try to summarize
-   the status.
-
-   Supported datapaths:
-
-   * *Linux upstream*: The datapath implemented by the kernel module shipped
-                       with Linux upstream.  Since features have been gradually
-                       introduced into the kernel, the table mentions the first
-                       Linux release whose OVS module supports the feature.
-
-   * *Linux OVS tree*: The datapath implemented by the Linux kernel module
-                       distributed with the OVS source tree.
-
-   * *Userspace*: Also known as DPDK, dpif-netdev or dummy datapath. It is the
-                  only datapath that works on NetBSD, FreeBSD and Mac OSX.
-
-   * *Hyper-V*: Also known as the Windows datapath.
-
-   The following table lists the datapath supported features from
-   an Open vSwitch user's perspective.
-
-Feature               | Linux upstream | Linux OVS tree | Userspace | Hyper-V |
-----------------------|:--------------:|:--------------:|:---------:|:-------:|
-NAT                   |      4.6       |       YES      |    NO     |   NO    |
-Connection tracking   |      4.3       |       YES      |  PARTIAL  | PARTIAL |
-Tunnel - LISP         |      NO        |       YES      |    NO     |   NO    |
-Tunnel - STT          |      NO        |       YES      |    NO     |   YES   |
-Tunnel - GRE          |      3.11      |       YES      |    YES    |   YES   |
-Tunnel - VXLAN        |      3.12      |       YES      |    YES    |   YES   |
-Tunnel - Geneve       |      3.18      |       YES      |    YES    |   YES   |
-Tunnel - GRE-IPv6     |      NO        |       NO       |    YES    |   NO    |
-Tunnel - VXLAN-IPv6   |      4.3       |       YES      |    YES    |   NO    |
-Tunnel - Geneve-IPv6  |      4.4       |       YES      |    YES    |   NO    |
-QoS - Policing        |      YES       |       YES      |    YES    |   NO    |
-QoS - Shaping         |      YES       |       YES      |    NO     |   NO    |
-sFlow                 |      YES       |       YES      |    YES    |   NO    |
-IPFIX                 |      3.10      |       YES      |    YES    |   NO    |
-Set action            |      YES       |       YES      |    YES    | PARTIAL |
-NIC Bonding           |      YES       |       YES      |    YES    |   NO    |
-Multiple VTEPs        |      YES       |       YES      |    YES    |   NO    |
-
-   **Notes:**
-   * Only a limited set of flow fields is modifiable via the set action by the
-     Hyper-V datapath.
-   * The Hyper-V datapath only supports one physical NIC per datapath. This is
-     why bonding is not supported.
-   * The Hyper-V datapath can have at most one IP address configured as a
-     tunnel endpoint.
-
-   The following table lists features that do not *directly* impact an
-   Open vSwitch user, e.g. because their absence can be hidden by the ofproto
-   layer (usually this comes with a performance penalty).
-
-Feature               | Linux upstream | Linux OVS tree | Userspace | Hyper-V |
-----------------------|:--------------:|:--------------:|:---------:|:-------:|
-SCTP flows            |      3.12      |       YES      |    YES    |   YES   |
-MPLS                  |      3.19      |       YES      |    YES    |   YES   |
-UFID                  |      4.0       |       YES      |    YES    |   NO    |
-Megaflows             |      3.12      |       YES      |    YES    |   NO    |
-Masked set action     |      4.0       |       YES      |    YES    |   NO    |
-Recirculation         |      3.19      |       YES      |    YES    |   YES   |
-TCP flags matching    |      3.13      |       YES      |    YES    |   NO    |
-Validate flow actions |      YES       |       YES      |    N/A    |   NO    |
-Multiple datapaths    |      YES       |       YES      |    YES    |   NO    |
-Tunnel TSO - STT      |      N/A       |       YES      |    NO     |   YES   |
-
-### Q: What DPDK version does each Open vSwitch release work with?
-
-A: The following table lists the DPDK version against which the
-   given versions of Open vSwitch will successfully build.
-
-| Open vSwitch | DPDK
-|:------------:|:-----:
-|    2.2.x     | 1.6
-|    2.3.x     | 1.6
-|    2.4.x     | 2.0
-|    2.5.x     | 2.2
-|    2.6.x     | 16.07
-
-### Q: I get an error like this when I configure Open vSwitch:
-
-       configure: error: Linux kernel in <dir> is version <x>, but
-       version newer than <y> is not supported (please refer to the
-       FAQ for advice)
-
-   What should I do?
-
-A: You have the following options:
-
-   - Use the Linux kernel module supplied with the kernel that you are
-     using.  (See also the following FAQ.)
-
-   - If there is a newer released version of Open vSwitch, consider
-     building that one, because it may support the kernel that you are
-     building against.  (To find out, consult the table in the
-     previous FAQ.)
-
-   - The Open vSwitch "master" branch may support the kernel that you
-     are using, so consider building the kernel module from "master".
-
-  All versions of Open vSwitch userspace are compatible with all
-  versions of the Open vSwitch kernel module, so you do not have to
-  use the kernel module from one source along with the userspace
-  programs from the same source.
-
-### Q: What features are not available in the Open vSwitch kernel datapath that ships as part of the upstream Linux kernel?
-
-A: The kernel module in upstream Linux does not include support for
-   LISP. Work is in progress to add support for LISP to the upstream
-   Linux version of the Open vSwitch kernel module. For now, if you
-   need this feature, use the kernel module from the Open vSwitch
-   distribution instead of the upstream Linux kernel module.
-
-   Certain features require kernel support to function or to have
-   reasonable performance. If the ovs-vswitchd log file indicates that
-   a feature is not supported, consider upgrading to a newer upstream
-   Linux release or using the kernel module paired with the userspace
-   distribution.
-
-### Q: Why do tunnels not work when using a kernel module other than the one packaged with Open vSwitch?
-
-A: Support for tunnels was added to the upstream Linux kernel module
-   after the rest of Open vSwitch. As a result, some kernels may contain
-   support for Open vSwitch but not tunnels. The minimum kernel version
-   that supports each tunnel protocol is:
-
-| Protocol |  Linux Kernel
-|:--------:|:-------------:
-| GRE      |    3.11
-| VXLAN    |    3.12
-| Geneve   |    3.18
-| LISP     | <not upstream>
-| STT      | <not upstream>
-
-   If you are using a version of the kernel that is older than the one
-   listed above, it is still possible to use that tunnel protocol. However,
-   you must compile and install the kernel module included with the Open
-   vSwitch distribution rather than the one on your machine. If problems
-   persist after doing this, check to make sure that the module that is
-   loaded is the one you expect.
-
-### Q: Why are UDP tunnel checksums not computed for VXLAN or Geneve?
-
-A: Generating outer UDP checksums requires kernel support that was not
-   part of the initial implementation of these protocols. If using the
-   upstream Linux Open vSwitch module, you must use kernel 4.0 or
-   newer. The out-of-tree modules from Open vSwitch release 2.4 and later
-   support UDP checksums.
-
-### Q: What features are not available when using the userspace datapath?
-
-A: Tunnel virtual ports are not supported, as described in the
-   previous answer.  It is also not possible to use queue-related
-   actions.  On Linux kernels before 2.6.39, maximum-sized VLAN packets
-   may not be transmitted.
-
-### Q: Should userspace or kernel be upgraded first to minimize downtime?
-
-   In general, the Open vSwitch userspace should be used with the
-   kernel version included in the same release or with the version
-   from upstream Linux.  However, when upgrading between two releases
-   of Open vSwitch it is best to migrate userspace first to reduce
-   the possibility of incompatibilities.
-
-### Q: What happened to the bridge compatibility feature?
-
-A: Bridge compatibility was a feature of Open vSwitch 1.9 and earlier.
-   When it was enabled, Open vSwitch imitated the interface of the
-   Linux kernel "bridge" module.  This allowed users to drop Open
-   vSwitch into environments designed to use the Linux kernel bridge
-   module without adapting the environment to use Open vSwitch.
-
-   Open vSwitch 1.10 and later do not support bridge compatibility.
-   The feature was dropped because version 1.10 adopted a new internal
-   architecture that made bridge compatibility difficult to maintain.
-   Now that many environments use OVS directly, it would be rarely
-   useful in any case.
-
-   To use bridge compatibility, install OVS 1.9 or earlier, including
-   the accompanying kernel modules (both the main and bridge
-   compatibility modules), following the instructions that come with
-   the release.  Be sure to start the ovs-brcompatd daemon.
-
-
-## Terminology
-
-### Q: I thought Open vSwitch was a virtual Ethernet switch, but the documentation keeps talking about bridges.  What's a bridge?
-
-A: In networking, the terms "bridge" and "switch" are synonyms.  Open
-   vSwitch implements an Ethernet switch, which means that it is also
-   an Ethernet bridge.
-
-### Q: What's a VLAN?
-
-A: See the "VLAN" section below.
-
-## Basic configuration
-
-### Q: How do I configure a port as an access port?
-
-A: Add "tag=VLAN" to your "ovs-vsctl add-port" command.  For example,
-   the following commands configure br0 with eth0 as a trunk port (the
-   default) and tap0 as an access port for VLAN 9:
-
-       ovs-vsctl add-br br0
-       ovs-vsctl add-port br0 eth0
-       ovs-vsctl add-port br0 tap0 tag=9
-
-   If you want to configure an already added port as an access port,
-   use "ovs-vsctl set", e.g.:
-
-       ovs-vsctl set port tap0 tag=9
-
-### Q: How do I configure a port as a SPAN port, that is, enable mirroring of all traffic to that port?
-
-A: The following commands configure br0 with eth0 and tap0 as trunk
-   ports.  All traffic coming in or going out on eth0 or tap0 is also
-   mirrored to tap1; any traffic arriving on tap1 is dropped:
-
-       ovs-vsctl add-br br0
-       ovs-vsctl add-port br0 eth0
-       ovs-vsctl add-port br0 tap0
-       ovs-vsctl add-port br0 tap1 \
-           -- --id=@p get port tap1 \
-           -- --id=@m create mirror name=m0 select-all=true output-port=@p \
-           -- set bridge br0 mirrors=@m
-
-   To later disable mirroring, run:
-
-       ovs-vsctl clear bridge br0 mirrors
-
-### Q: Does Open vSwitch support configuring a port in promiscuous mode?
-
-A: Yes.  How you configure it depends on what you mean by "promiscuous
-   mode":
-
-  - Conventionally, "promiscuous mode" is a feature of a network
-    interface card.  Ordinarily, a NIC passes to the CPU only the
-    packets actually destined to its host machine.  It discards
-    the rest to avoid wasting memory and CPU cycles.  When
-    promiscuous mode is enabled, however, it passes every packet
-    to the CPU.  On an old-style shared-media or hub-based
-    network, this allows the host to spy on all packets on the
-    network.  But in the switched networks that are almost
-    everywhere these days, promiscuous mode doesn't have much
-    effect, because few packets not destined to a host are
-    delivered to the host's NIC.
-
-    This form of promiscuous mode is configured in the guest OS of
-    the VMs on your bridge, e.g. with "ifconfig".
-
-  - The VMware vSwitch uses a different definition of "promiscuous
-    mode".  When you configure promiscuous mode on a VMware vNIC,
-    the vSwitch sends a copy of every packet received by the
-    vSwitch to that vNIC.  That has a much bigger effect than just
-    enabling promiscuous mode in a guest OS.  Rather than getting
-    a few stray packets for which the switch does not yet know the
-    correct destination, the vNIC gets every packet.  The effect
-    is similar to replacing the vSwitch by a virtual hub.
-
-    This "promiscuous mode" is what switches normally call "port
-    mirroring" or "SPAN".  For information on how to configure
-    SPAN, see "How do I configure a port as a SPAN port, that is,
-    enable mirroring of all traffic to that port?"
-
-### Q: How do I configure a DPDK port as an access port?
-
-A: Firstly, you must have a DPDK-enabled version of Open vSwitch.
-
-   If your version is DPDK-enabled it will support the other-config:dpdk-init
-   configuration in the database and will display lines with "EAL:..."
-   during startup when other_config:dpdk-init is set to 'true'.
-
-   Secondly, when adding a DPDK port, unlike a system port, the
-   type for the interface must be specified. For example;
-
-       ovs-vsctl add-br br0
-       ovs-vsctl add-port br0 dpdk0 -- set Interface dpdk0 type=dpdk
-
-   Finally, it is required that DPDK port names begin with 'dpdk'.
-
-   See [INSTALL.DPDK.rst] for more information on enabling and using DPDK with
-   Open vSwitch.
-
-### Q: How do I configure a VLAN as an RSPAN VLAN, that is, enable mirroring of all traffic to that VLAN?
-
-A: The following commands configure br0 with eth0 as a trunk port and
-   tap0 as an access port for VLAN 10.  All traffic coming in or going
-   out on tap0, as well as traffic coming in or going out on eth0 in
-   VLAN 10, is also mirrored to VLAN 15 on eth0.  The original tag for
-   VLAN 10, in cases where one is present, is dropped as part of
-   mirroring:
-
-       ovs-vsctl add-br br0
-       ovs-vsctl add-port br0 eth0
-       ovs-vsctl add-port br0 tap0 tag=10
-       ovs-vsctl \
-           -- --id=@m create mirror name=m0 select-all=true select-vlan=10 \
-                                    output-vlan=15 \
-           -- set bridge br0 mirrors=@m
-
-   To later disable mirroring, run:
-
-       ovs-vsctl clear bridge br0 mirrors
-
-   Mirroring to a VLAN can disrupt a network that contains unmanaged
-   switches.  See ovs-vswitchd.conf.db(5) for details.  Mirroring to a
-   GRE tunnel has fewer caveats than mirroring to a VLAN and should
-   generally be preferred.
-
-### Q: Can I mirror more than one input VLAN to an RSPAN VLAN?
-
-A: Yes, but mirroring to a VLAN strips the original VLAN tag in favor
-   of the specified output-vlan.  This loss of information may make
-   the mirrored traffic too hard to interpret.
-
-   To mirror multiple VLANs, use the commands above, but specify a
-   comma-separated list of VLANs as the value for select-vlan.  To
-   mirror every VLAN, use the commands above, but omit select-vlan and
-   its value entirely.
-
-   When a packet arrives on a VLAN that is used as a mirror output
-   VLAN, the mirror is disregarded.  Instead, in standalone mode, OVS
-   floods the packet across all the ports for which the mirror output
-   VLAN is configured.  (If an OpenFlow controller is in use, then it
-   can override this behavior through the flow table.)  If OVS is used
-   as an intermediate switch, rather than an edge switch, this ensures
-   that the RSPAN traffic is distributed through the network.
-
-   Mirroring to a VLAN can disrupt a network that contains unmanaged
-   switches.  See ovs-vswitchd.conf.db(5) for details.  Mirroring to a
-   GRE tunnel has fewer caveats than mirroring to a VLAN and should
-   generally be preferred.
-
-### Q: How do I configure mirroring of all traffic to a GRE tunnel?
-
-A: The following commands configure br0 with eth0 and tap0 as trunk
-   ports.  All traffic coming in or going out on eth0 or tap0 is also
-   mirrored to gre0, a GRE tunnel to the remote host 192.168.1.10; any
-   traffic arriving on gre0 is dropped:
-
-       ovs-vsctl add-br br0
-       ovs-vsctl add-port br0 eth0
-       ovs-vsctl add-port br0 tap0
-       ovs-vsctl add-port br0 gre0 \
-           -- set interface gre0 type=gre options:remote_ip=192.168.1.10 \
-           -- --id=@p get port gre0 \
-           -- --id=@m create mirror name=m0 select-all=true output-port=@p \
-           -- set bridge br0 mirrors=@m
-
-   To later disable mirroring and destroy the GRE tunnel:
-
-       ovs-vsctl clear bridge br0 mirrors
-       ovs-vsctl del-port br0 gre0
-
-### Q: Does Open vSwitch support ERSPAN?
-
-A: No.  As an alternative, Open vSwitch supports mirroring to a GRE
-   tunnel (see above).
-
-### Q: How do I connect two bridges?
-
-A: First, why do you want to do this?  Two connected bridges are not
-   much different from a single bridge, so you might as well just have
-   a single bridge with all your ports on it.
-
-   If you still want to connect two bridges, you can use a pair of
-   patch ports.  The following example creates bridges br0 and br1,
-   adds eth0 and tap0 to br0, adds tap1 to br1, and then connects br0
-   and br1 with a pair of patch ports.
-
-       ovs-vsctl add-br br0
-       ovs-vsctl add-port br0 eth0
-       ovs-vsctl add-port br0 tap0
-       ovs-vsctl add-br br1
-       ovs-vsctl add-port br1 tap1
-       ovs-vsctl \
-           -- add-port br0 patch0 \
-           -- set interface patch0 type=patch options:peer=patch1 \
-           -- add-port br1 patch1 \
-           -- set interface patch1 type=patch options:peer=patch0
-
-   Bridges connected with patch ports are much like a single bridge.
-   For instance, if the example above also added eth1 to br1, and both
-   eth0 and eth1 happened to be connected to the same next-hop switch,
-   then you could loop your network just as you would if you added
-   eth0 and eth1 to the same bridge (see the "Configuration Problems"
-   section below for more information).
-
-   If you are using Open vSwitch 1.9 or an earlier version, then you
-   need to be using the kernel module bundled with Open vSwitch rather
-   than the one that is integrated into Linux 3.3 and later, because
-   Open vSwitch 1.9 and earlier versions need kernel support for patch
-   ports.  This also means that in Open vSwitch 1.9 and earlier, patch
-   ports will not work with the userspace datapath, only with the
-   kernel module.
-
-### Q: How do I configure a bridge without an OpenFlow local port?  (Local port in the sense of OFPP_LOCAL)
-
-A: Open vSwitch does not support such a configuration.
-   Bridges always have their local ports.
-
-## Implementation Details
-
-### Q: I hear OVS has a couple of kinds of flows.  Can you tell me about them?
-
-A: Open vSwitch uses different kinds of flows for different purposes:
-
-  - OpenFlow flows are the most important kind of flow.  OpenFlow
-    controllers use these flows to define a switch's policy.
-    OpenFlow flows support wildcards, priorities, and multiple
-    tables.
-
-    When in-band control is in use, Open vSwitch sets up a few
-    "hidden" flows, with priority higher than a controller or the
-    user can configure, that are not visible via OpenFlow.  (See
-    the "Controller" section of the FAQ for more information
-    about hidden flows.)
-
-  - The Open vSwitch software switch implementation uses a second
-    kind of flow internally.  These flows, called "datapath" or
-    "kernel" flows, do not support priorities and comprise only a
-    single table, which makes them suitable for caching.  (Like
-    OpenFlow flows, datapath flows do support wildcarding, in Open
-    vSwitch 1.11 and later.)  OpenFlow flows and datapath flows
-    also support different actions and number ports differently.
-
-    Datapath flows are an implementation detail that is subject to
-    change in future versions of Open vSwitch.  Even with the
-    current version of Open vSwitch, hardware switch
-    implementations do not necessarily use this architecture.
-
-   Users and controllers directly control only the OpenFlow flow
-   table.  Open vSwitch manages the datapath flow table itself, so
-   users should not normally be concerned with it.
-
-### Q: Why are there so many different ways to dump flows?
-
-A: Open vSwitch has two kinds of flows (see the previous question), so
-   it has commands with different purposes for dumping each kind of
-   flow:
-
-  - `ovs-ofctl dump-flows <br>` dumps OpenFlow flows, excluding
-    hidden flows.  This is the most commonly useful form of flow
-    dump.  (Unlike the other commands, this should work with any
-    OpenFlow switch, not just Open vSwitch.)
-
-  - `ovs-appctl bridge/dump-flows <br>` dumps OpenFlow flows,
-    including hidden flows.  This is occasionally useful for
-    troubleshooting suspected issues with in-band control.
-
-  - `ovs-dpctl dump-flows [dp]` dumps the datapath flow table
-    entries for a Linux kernel-based datapath.  In Open vSwitch
-    1.10 and later, ovs-vswitchd merges multiple switches into a
-    single datapath, so it will show all the flows on all your
-    kernel-based switches.  This command can occasionally be
-    useful for debugging.
-
-  - `ovs-appctl dpif/dump-flows <br>`, new in Open vSwitch 1.10,
-    dumps datapath flows for only the specified bridge, regardless
-    of the type.
-
-### Q: How does multicast snooping works with VLANs?
-
-A: Open vSwitch maintains snooping tables for each VLAN.
-
-### Q: Can OVS populate the kernel flow table in advance instead of in reaction to packets?
-
-A: No.  There are several reasons:
-
-  - Kernel flows are not as sophisticated as OpenFlow flows, which
-    means that some OpenFlow policies could require a large number of
-    kernel flows.  The "conjunctive match" feature is an extreme
-    example: the number of kernel flows it requires is the product of
-    the number of flows in each dimension.
-
-  - With multiple OpenFlow flow tables and simple sets of actions, the
-    number of kernel flows required can be as large as the product of
-    the number of flows in each dimension.  With more sophisticated
-    actions, the number of kernel flows could be even larger.
-
-  - Open vSwitch is designed so that any version of OVS userspace
-    interoperates with any version of the OVS kernel module.  This
-    forward and backward compatibility requires that userspace observe
-    how the kernel module parses received packets.  This is only
-    possible in a straightforward way when userspace adds kernel flows
-    in reaction to received packets.
-
-  For more relevant information on the architecture of Open vSwitch,
-  please read "The Design and Implementation of Open vSwitch",
-  published in USENIX NSDI 2015.
-
-## Performance
-
-### Q: I just upgraded and I see a performance drop.  Why?
-
-A: The OVS kernel datapath may have been updated to a newer version than
-   the OVS userspace components.  Sometimes new versions of OVS kernel
-   module add functionality that is backwards compatible with older
-   userspace components but may cause a drop in performance with them.
-   Especially, if a kernel module from OVS 2.1 or newer is paired with
-   OVS userspace 1.10 or older, there will be a performance drop for
-   TCP traffic.
-
-   Updating the OVS userspace components to the latest released
-   version should fix the performance degradation.
-
-   To get the best possible performance and functionality, it is
-   recommended to pair the same versions of the kernel module and OVS
-   userspace.
-
-
-## Configuration Problems
-
-### Q: I created a bridge and added my Ethernet port to it, using commands
-   like these:
-
-       ovs-vsctl add-br br0
-       ovs-vsctl add-port br0 eth0
-
-   and as soon as I ran the "add-port" command I lost all connectivity
-   through eth0.  Help!
-
-A: A physical Ethernet device that is part of an Open vSwitch bridge
-   should not have an IP address.  If one does, then that IP address
-   will not be fully functional.
-
-   You can restore functionality by moving the IP address to an Open
-   vSwitch "internal" device, such as the network device named after
-   the bridge itself.  For example, assuming that eth0's IP address is
-   192.168.128.5, you could run the commands below to fix up the
-   situation:
-
-       ifconfig eth0 0.0.0.0
-       ifconfig br0 192.168.128.5
-
-   (If your only connection to the machine running OVS is through the
-   IP address in question, then you would want to run all of these
-   commands on a single command line, or put them into a script.)  If
-   there were any additional routes assigned to eth0, then you would
-   also want to use commands to adjust these routes to go through br0.
-
-   If you use DHCP to obtain an IP address, then you should kill the
-   DHCP client that was listening on the physical Ethernet interface
-   (e.g. eth0) and start one listening on the internal interface
-   (e.g. br0).  You might still need to manually clear the IP address
-   from the physical interface (e.g. with "ifconfig eth0 0.0.0.0").
-
-   There is no compelling reason why Open vSwitch must work this way.
-   However, this is the way that the Linux kernel bridge module has
-   always worked, so it's a model that those accustomed to Linux
-   bridging are already used to.  Also, the model that most people
-   expect is not implementable without kernel changes on all the
-   versions of Linux that Open vSwitch supports.
-
-   By the way, this issue is not specific to physical Ethernet
-   devices.  It applies to all network devices except Open vSwitch
-   "internal" devices.
-
-### Q: I created a bridge and added a couple of Ethernet ports to it,
-### using commands like these:
-
-       ovs-vsctl add-br br0
-       ovs-vsctl add-port br0 eth0
-       ovs-vsctl add-port br0 eth1
-
-   and now my network seems to have melted: connectivity is unreliable
-   (even connectivity that doesn't go through Open vSwitch), all the
-   LEDs on my physical switches are blinking, wireshark shows
-   duplicated packets, and CPU usage is very high.
-
-A: More than likely, you've looped your network.  Probably, eth0 and
-   eth1 are connected to the same physical Ethernet switch.  This
-   yields a scenario where OVS receives a broadcast packet on eth0 and
-   sends it out on eth1, then the physical switch connected to eth1
-   sends the packet back on eth0, and so on forever.  More complicated
-   scenarios, involving a loop through multiple switches, are possible
-   too.
-
-   The solution depends on what you are trying to do:
-
-   - If you added eth0 and eth1 to get higher bandwidth or higher
-     reliability between OVS and your physical Ethernet switch,
-     use a bond.  The following commands create br0 and then add
-     eth0 and eth1 as a bond:
-
-         ovs-vsctl add-br br0
-         ovs-vsctl add-bond br0 bond0 eth0 eth1
-
-     Bonds have tons of configuration options.  Please read the
-     documentation on the Port table in ovs-vswitchd.conf.db(5)
-     for all the details.
-
-     Configuration for DPDK-enabled interfaces is slightly less
-     straightforward: see [INSTALL.DPDK.rst].
-
-   - Perhaps you don't actually need eth0 and eth1 to be on the
-     same bridge.  For example, if you simply want to be able to
-     connect each of them to virtual machines, then you can put
-     each of them on a bridge of its own:
-
-         ovs-vsctl add-br br0
-         ovs-vsctl add-port br0 eth0
-
-         ovs-vsctl add-br br1
-         ovs-vsctl add-port br1 eth1
-
-     and then connect VMs to br0 and br1.  (A potential
-     disadvantage is that traffic cannot directly pass between br0
-     and br1.  Instead, it will go out eth0 and come back in eth1,
-     or vice versa.)
-
-   - If you have a redundant or complex network topology and you
-     want to prevent loops, turn on spanning tree protocol (STP).
-     The following commands create br0, enable STP, and add eth0
-     and eth1 to the bridge.  The order is important because you
-     don't want have to have a loop in your network even
-     transiently:
-
-         ovs-vsctl add-br br0
-         ovs-vsctl set bridge br0 stp_enable=true
-         ovs-vsctl add-port br0 eth0
-         ovs-vsctl add-port br0 eth1
-
-     The Open vSwitch implementation of STP is not well tested.
-     Please report any bugs you observe, but if you'd rather avoid
-     acting as a beta tester then another option might be your
-     best shot.
-
-### Q: I can't seem to use Open vSwitch in a wireless network.
-
-A: Wireless base stations generally only allow packets with the source
-   MAC address of NIC that completed the initial handshake.
-   Therefore, without MAC rewriting, only a single device can
-   communicate over a single wireless link.
-
-   This isn't specific to Open vSwitch, it's enforced by the access
-   point, so the same problems will show up with the Linux bridge or
-   any other way to do bridging.
-
-### Q: I can't seem to add my PPP interface to an Open vSwitch bridge.
-
-A: PPP most commonly carries IP packets, but Open vSwitch works only
-   with Ethernet frames.  The correct way to interface PPP to an
-   Ethernet network is usually to use routing instead of switching.
-
-### Q: Is there any documentation on the database tables and fields?
-
-A: Yes.  ovs-vswitchd.conf.db(5) is a comprehensive reference.
-
-### Q: When I run ovs-dpctl I no longer see the bridges I created.  Instead,
-   I only see a datapath called "ovs-system".  How can I see datapath
-   information about a particular bridge?
-
-A: In version 1.9.0, OVS switched to using a single datapath that is
-   shared by all bridges of that type.  The "ovs-appctl dpif/*"
-   commands provide similar functionality that is scoped by the bridge.
-
-### Q: I created a GRE port using ovs-vsctl so why can't I send traffic or
-   see the port in the datapath?
-
-A: On Linux kernels before 3.11, the OVS GRE module and Linux GRE module
-   cannot be loaded at the same time. It is likely that on your system the
-   Linux GRE module is already loaded and blocking OVS (to confirm, check
-   dmesg for errors regarding GRE registration). To fix this, unload all
-   GRE modules that appear in lsmod as well as the OVS kernel module. You
-   can then reload the OVS module following the directions in
-   [INSTALL.rst], which will ensure that dependencies are satisfied.
-
-### Q: Open vSwitch does not seem to obey my packet filter rules.
-
-A: It depends on mechanisms and configurations you want to use.
-
-   You cannot usefully use typical packet filters, like iptables, on
-   physical Ethernet ports that you add to an Open vSwitch bridge.
-   This is because Open vSwitch captures packets from the interface at
-   a layer lower below where typical packet-filter implementations
-   install their hooks.  (This actually applies to any interface of
-   type "system" that you might add to an Open vSwitch bridge.)
-
-   You can usefully use typical packet filters on Open vSwitch
-   internal ports as they are mostly ordinary interfaces from the point
-   of view of packet filters.
-
-   For example, suppose you create a bridge br0 and add Ethernet port
-   eth0 to it.  Then you can usefully add iptables rules to affect the
-   internal interface br0, but not the physical interface eth0.  (br0
-   is also where you would add an IP address, as discussed elsewhere
-   in the FAQ.)
-
-   For simple filtering rules, it might be possible to achieve similar
-   results by installing appropriate OpenFlow flows instead.
-
-   If the use of a particular packet filter setup is essential, Open
-   vSwitch might not be the best choice for you.  On Linux, you might
-   want to consider using the Linux Bridge.  (This is the only choice if
-   you want to use ebtables rules.)  On NetBSD, you might want to
-   consider using the bridge(4) with BRIDGE_IPF option.
-
-### Q: It seems that Open vSwitch does nothing when I removed a port and
-   then immediately put it back.  For example, consider that p1 is
-   a port of type=internal:
-
-       ovs-vsctl del-port br0 p1 -- \
-           add-port br0 p1 -- \
-           set interface p1 type=internal
-
-A: It's an expected behaviour.
-
-   If del-port and add-port happen in a single OVSDB transaction as
-   your example, Open vSwitch always "skips" the intermediate steps.
-   Even if they are done in multiple transactions, it's still allowed
-   for Open vSwitch to skip the intermediate steps and just implement
-   the overall effect.  In both cases, your example would be turned
-   into a no-op.
-
-   If you want to make Open vSwitch actually destroy and then re-create
-   the port for some side effects like resetting kernel setting for the
-   corresponding interface, you need to separate operations into multiple
-   OVSDB transactions and ensure that at least the first one does not have
-   --no-wait.  In the following example, the first ovs-vsctl will block
-   until Open vSwitch reloads the new configuration and removes the port:
-
-       ovs-vsctl del-port br0 p1
-       ovs-vsctl add-port br0 p1 -- \
-           set interface p1 type=internal
-
-### Q: I want to add thousands of ports to an Open vSwitch bridge, but
-   it takes too long (minutes or hours) to do it with ovs-vsctl.  How
-   can I do it faster?
-
-A: If you add them one at a time with ovs-vsctl, it can take a long
-   time to add thousands of ports to an Open vSwitch bridge.  This is
-   because every invocation of ovs-vsctl first reads the current
-   configuration from OVSDB.  As the number of ports grows, this
-   starts to take an appreciable amount of time, and when it is
-   repeated thousands of times the total time becomes significant.
-
-   The solution is to add the ports in one invocation of ovs-vsctl (or
-   a small number of them).  For example, using bash:
-
-       ovs-vsctl add-br br0
-       cmds=; for i in {1..5000}; do cmds+=" -- add-port br0 p$i"; done
-       ovs-vsctl $cmds
-
-   takes seconds, not minutes or hours, in the OVS sandbox environment.
-
-### Q: I created a bridge named br0.  My bridge shows up in "ovs-vsctl
-    show", but "ovs-ofctl show br0" just prints "br0 is not a bridge
-    or a socket".
-
-A: Open vSwitch wasn't able to create the bridge.  Check the
-   ovs-vswitchd log for details (Debian and Red Hat packaging for Open
-   vSwitch put it in /var/log/openvswitch/ovs-vswitchd.log).
-
-   In general, the Open vSwitch database reflects the desired
-   configuration state.  ovs-vswitchd monitors the database and, when
-   it changes, reconfigures the system to reflect the new desired
-   state.  This normally happens very quickly.  Thus, a discrepancy
-   between the database and the actual state indicates that
-   ovs-vswitchd could not implement the configuration, and so one
-   should check the log to find out why.  (Another possible cause is
-   that ovs-vswitchd is not running.  This will make "ovs-vsctl"
-   commands hang, if they change the configuration, unless one
-   specifies "--no-wait".)
-
-### Q: I have a bridge br0.  I added a new port vif1.0, and it shows
-    up in "ovs-vsctl show", but "ovs-vsctl list port" says that it has
-    OpenFlow port ("ofport") -1, and "ovs-ofctl show br0" doesn't show
-    vif1.0 at all.
-
-A: Open vSwitch wasn't able to create the port.  Check the
-   ovs-vswitchd log for details (Debian and Red Hat packaging for Open
-   vSwitch put it in /var/log/openvswitch/ovs-vswitchd.log).  Please
-   see the previous question for more information.
-
-   You may want to upgrade to Open vSwitch 2.3 (or later), in which
-   ovs-vsctl will immediately report when there is an issue creating a
-   port.
-
-### Q: I created a tap device tap0, configured an IP address on it, and
-    added it to a bridge, like this:
-
-        tunctl -t tap0
-	ifconfig tap0 192.168.0.123
-	ovs-vsctl add-br br0
-	ovs-vsctl add-port br0 tap0
-
-    I expected that I could then use this IP address to contact other
-    hosts on the network, but it doesn't work.  Why not?
-
-A: The short answer is that this is a misuse of a "tap" device.  Use
-   an "internal" device implemented by Open vSwitch, which works
-   differently and is designed for this use.  To solve this problem
-   with an internal device, instead run:
-
-       ovs-vsctl add-br br0
-       ovs-vsctl add-port br0 int0 -- set Interface int0 type=internal
-       ifconfig int0 192.168.0.123
-
-   Even more simply, you can take advantage of the internal port that
-   every bridge has under the name of the bridge:
-
-       ovs-vsctl add-br br0
-       ifconfig br0 192.168.0.123
-
-   In more detail, a "tap" device is an interface between the Linux
-   (or *BSD) network stack and a user program that opens it as a
-   socket.  When the "tap" device transmits a packet, it appears in
-   the socket opened by the userspace program.  Conversely, when the
-   userspace program writes to the "tap" socket, the kernel TCP/IP
-   stack processes the packet as if it had been received by the "tap"
-   device.
-
-   Consider the configuration above.  Given this configuration, if you
-   "ping" an IP address in the 192.168.0.x subnet, the Linux kernel
-   routing stack will transmit an ARP on the tap0 device.  Open
-   vSwitch userspace treats "tap" devices just like any other network
-   device; that is, it doesn't open them as "tap" sockets.  That means
-   that the ARP packet will simply get dropped.
-
-   You might wonder why the Open vSwitch kernel module doesn't
-   intercept the ARP packet and bridge it.  After all, Open vSwitch
-   intercepts packets on other devices.  The answer is that Open
-   vSwitch only intercepts *received* packets, but this is a packet
-   being transmitted.  The same thing happens for all other types of
-   network devices, except for Open vSwitch "internal" ports.  If you,
-   for example, add a physical Ethernet port to an OVS bridge,
-   configure an IP address on a physical Ethernet port, and then issue
-   a "ping" to an address in that subnet, the same thing happens: an
-   ARP gets transmitted on the physical Ethernet port and Open vSwitch
-   never sees it.  (You should not do that, as documented at the
-   beginning of this section.)
-
-   It can make sense to add a "tap" device to an Open vSwitch bridge,
-   if some userspace program (other than Open vSwitch) has opened the
-   tap socket.  This is the case, for example, if the "tap" device was
-   created by KVM (or QEMU) to simulate a virtual NIC.  In such a
-   case, when OVS bridges a packet to the "tap" device, the kernel
-   forwards that packet to KVM in userspace, which passes it along to
-   the VM, and in the other direction, when the VM sends a packet, KVM
-   writes it to the "tap" socket, which causes OVS to receive it and
-   bridge it to the other OVS ports.  Please note that in such a case
-   no IP address is configured on the "tap" device (there is normally
-   an IP address configured in the virtual NIC inside the VM, but this
-   is not visible to the host Linux kernel or to Open vSwitch).
-
-   There is one special case in which Open vSwitch does directly read
-   and write "tap" sockets.  This is an implementation detail of the
-   Open vSwitch userspace switch, which implements its "internal"
-   ports as Linux (or *BSD) "tap" sockets.  In such a userspace
-   switch, OVS receives packets sent on the "tap" device used to
-   implement an "internal" port by reading the associated "tap"
-   socket, and bridges them to the rest of the switch.  In the other
-   direction, OVS transmits packets bridged to the "internal" port by
-   writing them to the "tap" socket, causing them to be processed by
-   the kernel TCP/IP stack as if they had been received on the "tap"
-   device.  Users should not need to be concerned with this
-   implementation detail.
-
-   Open vSwitch has a network device type called "tap".  This is
-   intended only for implementing "internal" ports in the OVS
-   userspace switch and should not be used otherwise.  In particular,
-   users should not configure KVM "tap" devices as type "tap" (use
-   type "system", the default, instead).
-
-### Q: I observe packet loss at the beginning of RFC2544 tests on a
-    server running few hundred container apps bridged to OVS with traffic
-    generated by HW traffic generator.  How can I fix this?
-
-A: This is expected behavior on virtual switches.  RFC2544 tests were
-   designed for hardware switches, which don't have caches on the fastpath
-   that need to be heated.  Traffic generators in order to prime the switch
-   use learning phase to heat the caches before sending the actual traffic
-   in test phase.  In case of OVS the cache is flushed quickly and to
-   accommodate the traffic generator's delay between learning and test phase,
-   the max-idle timeout settings should be changed to 50000 ms.
-
-   ovs-vsctl --no-wait set Open_vSwitch . other_config:max-idle=50000
-
-### Q: How can I configure the bridge internal interface MTU? Why does Open
-    vSwitch keep changing internal ports MTU?
-
-A: By default Open vSwitch overrides the internal interfaces (e.g. br0) MTU.
-   If you have just an internal interface (e.g. br0) and a physical interface
-   (e.g. eth0), then every change in MTU to eth0 will be reflected to br0.
-   Any manual MTU configuration using `ip` or `ifconfig` on internal interfaces
-   is going to be overridden by Open vSwitch to match the current bridge
-   minimum.
-
-   Sometimes this behavior is not desirable, for example with tunnels.  The
-   MTU of an internal interface can be explicitly set using the following
-   command:
-
-       ovs-vsctl set int br0 mtu_request=1450
-
-   After this, Open vSwitch will configure br0 MTU to 1450.  Since this
-   setting is in the database it will be persistent (compared to what
-   happens with `ip` or `ifconfig`).
-
-   The MTU configuration can be removed to restore the default behavior with
-
-       ovs-vsctl set int br0 mtu_request=[]
-
-   The mtu_request column can be used to configure MTU even for physical
-   interfaces (e.g. eth0).
-
-## QOS
-
-### Q: Does OVS support Quality of Service (QoS)?
-
-A: Yes.  For traffic that egresses from a switch, OVS supports traffic
-   shaping; for traffic that ingresses into a switch, OVS support
-   policing.  Policing is a simple form of quality-of-service that
-   simply drops packets received in excess of the configured rate.  Due
-   to its simplicity, policing is usually less accurate and less
-   effective than egress traffic shaping, which queues packets.
-
-   Keep in mind that ingress and egress are from the perspective of the
-   switch.  That means that egress shaping limits the rate at which
-   traffic is allowed to transmit from a physical interface, but not the
-   rate at which traffic will be received on a virtual machine's VIF.
-   For ingress policing, the behavior is the opposite.
-
-### Q: How do I configure egress traffic shaping?
-
-A: Suppose that you want to set up bridge br0 connected to physical
-   Ethernet port eth0 (a 1 Gbps device) and virtual machine interfaces
-   vif1.0 and vif2.0, and that you want to limit traffic from vif1.0
-   to eth0 to 10 Mbps and from vif2.0 to eth0 to 20 Mbps.  Then, you
-   could configure the bridge this way:
-
-       ovs-vsctl -- \
-           add-br br0 -- \
-           add-port br0 eth0 -- \
-           add-port br0 vif1.0 -- set interface vif1.0 ofport_request=5 -- \
-           add-port br0 vif2.0 -- set interface vif2.0 ofport_request=6 -- \
-           set port eth0 qos=@newqos -- \
-           --id=@newqos create qos type=linux-htb \
-               other-config:max-rate=1000000000 \
-               queues:123=@vif10queue \
-               queues:234=@vif20queue -- \
-           --id=@vif10queue create queue other-config:max-rate=10000000 -- \
-           --id=@vif20queue create queue other-config:max-rate=20000000
-
-   At this point, bridge br0 is configured with the ports and eth0 is
-   configured with the queues that you need for QoS, but nothing is
-   actually directing packets from vif1.0 or vif2.0 to the queues that
-   we have set up for them.  That means that all of the packets to
-   eth0 are going to the "default queue", which is not what we want.
-
-   We use OpenFlow to direct packets from vif1.0 and vif2.0 to the
-   queues reserved for them:
-
-       ovs-ofctl add-flow br0 in_port=5,actions=set_queue:123,normal
-       ovs-ofctl add-flow br0 in_port=6,actions=set_queue:234,normal
-
-   Each of the above flows matches on the input port, sets up the
-   appropriate queue (123 for vif1.0, 234 for vif2.0), and then
-   executes the "normal" action, which performs the same switching
-   that Open vSwitch would have done without any OpenFlow flows being
-   present.  (We know that vif1.0 and vif2.0 have OpenFlow port
-   numbers 5 and 6, respectively, because we set their ofport_request
-   columns above.  If we had not done that, then we would have needed
-   to find out their port numbers before setting up these flows.)
-
-   Now traffic going from vif1.0 or vif2.0 to eth0 should be
-   rate-limited.
-
-   By the way, if you delete the bridge created by the above commands,
-   with:
-
-       ovs-vsctl del-br br0
-
-   then that will leave one unreferenced QoS record and two
-   unreferenced Queue records in the Open vSwich database.  One way to
-   clear them out, assuming you don't have other QoS or Queue records
-   that you want to keep, is:
-
-       ovs-vsctl -- --all destroy QoS -- --all destroy Queue
-
-   If you do want to keep some QoS or Queue records, or the Open
-   vSwitch you are using is older than version 1.8 (which added the
-   --all option), then you will have to destroy QoS and Queue records
-   individually.
-
-### Q: How do I configure ingress policing?
-
-A: A policing policy can be configured on an interface to drop packets
-   that arrive at a higher rate than the configured value.  For example,
-   the following commands will rate-limit traffic that vif1.0 may
-   generate to 10Mbps:
-
-       ovs-vsctl set interface vif1.0 ingress_policing_rate=10000
-       ovs-vsctl set interface vif1.0 ingress_policing_burst=8000
-
-   Traffic policing can interact poorly with some network protocols and
-   can have surprising results.  The "Ingress Policing" section of
-   ovs-vswitchd.conf.db(5) discusses the issues in greater detail.
-
-### Q: I configured Quality of Service (QoS) in my OpenFlow network by
-   adding records to the QoS and Queue table, but the results aren't
-   what I expect.
-
-A: Did you install OpenFlow flows that use your queues?  This is the
-   primary way to tell Open vSwitch which queues you want to use.  If
-   you don't do this, then the default queue will be used, which will
-   probably not have the effect you want.
-
-   Refer to the previous question for an example.
-
-### Q: I'd like to take advantage of some QoS feature that Open vSwitch
-   doesn't yet support.  How do I do that?
-
-A: Open vSwitch does not implement QoS itself.  Instead, it can
-   configure some, but not all, of the QoS features built into the
-   Linux kernel.  If you need some QoS feature that OVS cannot
-   configure itself, then the first step is to figure out whether
-   Linux QoS supports that feature.  If it does, then you can submit a
-   patch to support Open vSwitch configuration for that feature, or
-   you can use "tc" directly to configure the feature in Linux.  (If
-   Linux QoS doesn't support the feature you want, then first you have
-   to add that support to Linux.)
-
-### Q: I configured QoS, correctly, but my measurements show that it isn't
-   working as well as I expect.
-
-A: With the Linux kernel, the Open vSwitch implementation of QoS has
-   two aspects:
-
-   - Open vSwitch configures a subset of Linux kernel QoS
-     features, according to what is in OVSDB.  It is possible that
-     this code has bugs.  If you believe that this is so, then you
-     can configure the Linux traffic control (QoS) stack directly
-     with the "tc" program.  If you get better results that way,
-     you can send a detailed bug report to bugs at openvswitch.org.
-
-     It is certain that Open vSwitch cannot configure every Linux
-     kernel QoS feature.  If you need some feature that OVS cannot
-     configure, then you can also use "tc" directly (or add that
-     feature to OVS).
-
-   - The Open vSwitch implementation of OpenFlow allows flows to
-     be directed to particular queues.  This is pretty simple and
-     unlikely to have serious bugs at this point.
-
-   However, most problems with QoS on Linux are not bugs in Open
-   vSwitch at all.  They tend to be either configuration errors
-   (please see the earlier questions in this section) or issues with
-   the traffic control (QoS) stack in Linux.  The Open vSwitch
-   developers are not experts on Linux traffic control.  We suggest
-   that, if you believe you are encountering a problem with Linux
-   traffic control, that you consult the tc manpages (e.g. tc(8),
-   tc-htb(8), tc-hfsc(8)), web resources (e.g. http://lartc.org/), or
-   mailing lists (e.g. http://vger.kernel.org/vger-lists.html#netdev).
-
-### Q: Does Open vSwitch support OpenFlow meters?
-
-A: Since version 2.0, Open vSwitch has OpenFlow protocol support for
-   OpenFlow meters.  There is no implementation of meters in the Open
-   vSwitch software switch (neither the kernel-based nor userspace
-   switches).
-
-## VLANs
-
-### Q: What's a VLAN?
-
-A: At the simplest level, a VLAN (short for "virtual LAN") is a way to
-   partition a single switch into multiple switches.  Suppose, for
-   example, that you have two groups of machines, group A and group B.
-   You want the machines in group A to be able to talk to each other,
-   and you want the machine in group B to be able to talk to each
-   other, but you don't want the machines in group A to be able to
-   talk to the machines in group B.  You can do this with two
-   switches, by plugging the machines in group A into one switch and
-   the machines in group B into the other switch.
-
-   If you only have one switch, then you can use VLANs to do the same
-   thing, by configuring the ports for machines in group A as VLAN
-   "access ports" for one VLAN and the ports for group B as "access
-   ports" for a different VLAN.  The switch will only forward packets
-   between ports that are assigned to the same VLAN, so this
-   effectively subdivides your single switch into two independent
-   switches, one for each group of machines.
-
-   So far we haven't said anything about VLAN headers.  With access
-   ports, like we've described so far, no VLAN header is present in
-   the Ethernet frame.  This means that the machines (or switches)
-   connected to access ports need not be aware that VLANs are
-   involved, just like in the case where we use two different physical
-   switches.
-
-   Now suppose that you have a whole bunch of switches in your
-   network, instead of just one, and that some machines in group A are
-   connected directly to both switches 1 and 2.  To allow these
-   machines to talk to each other, you could add an access port for
-   group A's VLAN to switch 1 and another to switch 2, and then
-   connect an Ethernet cable between those ports.  That works fine,
-   but it doesn't scale well as the number of switches and the number
-   of VLANs increases, because you use up a lot of valuable switch
-   ports just connecting together your VLANs.
-
-   This is where VLAN headers come in.  Instead of using one cable and
-   two ports per VLAN to connect a pair of switches, we configure a
-   port on each switch as a VLAN "trunk port".  Packets sent and
-   received on a trunk port carry a VLAN header that says what VLAN
-   the packet belongs to, so that only two ports total are required to
-   connect the switches, regardless of the number of VLANs in use.
-   Normally, only switches (either physical or virtual) are connected
-   to a trunk port, not individual hosts, because individual hosts
-   don't expect to see a VLAN header in the traffic that they receive.
-
-   None of the above discussion says anything about particular VLAN
-   numbers.  This is because VLAN numbers are completely arbitrary.
-   One must only ensure that a given VLAN is numbered consistently
-   throughout a network and that different VLANs are given different
-   numbers.  (That said, VLAN 0 is usually synonymous with a packet
-   that has no VLAN header, and VLAN 4095 is reserved.)
-
-### Q: VLANs don't work.
-
-A: Many drivers in Linux kernels before version 3.3 had VLAN-related
-   bugs.  If you are having problems with VLANs that you suspect to be
-   driver related, then you have several options:
-
-   - Upgrade to Linux 3.3 or later.
-
-   - Build and install a fixed version of the particular driver
-     that is causing trouble, if one is available.
-
-   - Use a NIC whose driver does not have VLAN problems.
-
-   - Use "VLAN splinters", a feature in Open vSwitch 1.4 upto 2.5
-     that works around bugs in kernel drivers.  To enable VLAN
-     splinters on interface eth0, use the command:
-
-       ovs-vsctl set interface eth0 other-config:enable-vlan-splinters=true
-
-     For VLAN splinters to be effective, Open vSwitch must know
-     which VLANs are in use.  See the "VLAN splinters" section in
-     the Interface table in ovs-vswitchd.conf.db(5) for details on
-     how Open vSwitch infers in-use VLANs.
-
-     VLAN splinters increase memory use and reduce performance, so
-     use them only if needed.
-
-   - Apply the "vlan workaround" patch from the XenServer kernel
-     patch queue, build Open vSwitch against this patched kernel,
-     and then use ovs-vlan-bug-workaround(8) to enable the VLAN
-     workaround for each interface whose driver is buggy.
-
-     (This is a nontrivial exercise, so this option is included
-     only for completeness.)
-
-   It is not always easy to tell whether a Linux kernel driver has
-   buggy VLAN support.  The ovs-vlan-test(8) and ovs-test(8) utilities
-   can help you test.  See their manpages for details.  Of the two
-   utilities, ovs-test(8) is newer and more thorough, but
-   ovs-vlan-test(8) may be easier to use.
-
-### Q: VLANs still don't work.  I've tested the driver so I know that it's OK.
-
-A: Do you have VLANs enabled on the physical switch that OVS is
-   attached to?  Make sure that the port is configured to trunk the
-   VLAN or VLANs that you are using with OVS.
-
-### Q: Outgoing VLAN-tagged traffic goes through OVS to my physical switch
-   and to its destination host, but OVS seems to drop incoming return
-   traffic.
-
-A: It's possible that you have the VLAN configured on your physical
-   switch as the "native" VLAN.  In this mode, the switch treats
-   incoming packets either tagged with the native VLAN or untagged as
-   part of the native VLAN.  It may also send outgoing packets in the
-   native VLAN without a VLAN tag.
-
-   If this is the case, you have two choices:
-
-   - Change the physical switch port configuration to tag packets
-     it forwards to OVS with the native VLAN instead of forwarding
-     them untagged.
-
-   - Change the OVS configuration for the physical port to a
-     native VLAN mode.  For example, the following sets up a
-     bridge with port eth0 in "native-tagged" mode in VLAN 9:
-
-         ovs-vsctl add-br br0
-         ovs-vsctl add-port br0 eth0 tag=9 vlan_mode=native-tagged
-
-     In this situation, "native-untagged" mode will probably work
-     equally well.  Refer to the documentation for the Port table
-     in ovs-vswitchd.conf.db(5) for more information.
-
-### Q: I added a pair of VMs on different VLANs, like this:
-
-       ovs-vsctl add-br br0
-       ovs-vsctl add-port br0 eth0
-       ovs-vsctl add-port br0 tap0 tag=9
-       ovs-vsctl add-port br0 tap1 tag=10
-
-    but the VMs can't access each other, the external network, or the
-    Internet.
-
-A: It is to be expected that the VMs can't access each other.  VLANs
-   are a means to partition a network.  When you configured tap0 and
-   tap1 as access ports for different VLANs, you indicated that they
-   should be isolated from each other.
-
-   As for the external network and the Internet, it seems likely that
-   the machines you are trying to access are not on VLAN 9 (or 10) and
-   that the Internet is not available on VLAN 9 (or 10).
-
-### Q: I added a pair of VMs on the same VLAN, like this:
-
-       ovs-vsctl add-br br0
-       ovs-vsctl add-port br0 eth0
-       ovs-vsctl add-port br0 tap0 tag=9
-       ovs-vsctl add-port br0 tap1 tag=9
-
-    The VMs can access each other, but not the external network or the
-    Internet.
-
-A: It seems likely that the machines you are trying to access in the
-   external network are not on VLAN 9 and that the Internet is not
-   available on VLAN 9.  Also, ensure VLAN 9 is set up as an allowed
-   trunk VLAN on the upstream switch port to which eth0 is connected.
-
-### Q: Can I configure an IP address on a VLAN?
-
-A: Yes.  Use an "internal port" configured as an access port.  For
-   example, the following configures IP address 192.168.0.7 on VLAN 9.
-   That is, OVS will forward packets from eth0 to 192.168.0.7 only if
-   they have an 802.1Q header with VLAN 9.  Conversely, traffic
-   forwarded from 192.168.0.7 to eth0 will be tagged with an 802.1Q
-   header with VLAN 9:
-
-       ovs-vsctl add-br br0
-       ovs-vsctl add-port br0 eth0
-       ovs-vsctl add-port br0 vlan9 tag=9 -- set interface vlan9 type=internal
-       ifconfig vlan9 192.168.0.7
-
-   See also the following question.
-
-### Q: I configured one IP address on VLAN 0 and another on VLAN 9, like
-   this:
-
-       ovs-vsctl add-br br0
-       ovs-vsctl add-port br0 eth0
-       ifconfig br0 192.168.0.5
-       ovs-vsctl add-port br0 vlan9 tag=9 -- set interface vlan9 type=internal
-       ifconfig vlan9 192.168.0.9
-
-   but other hosts that are only on VLAN 0 can reach the IP address
-   configured on VLAN 9.  What's going on?
-
-A: RFC 1122 section 3.3.4.2 "Multihoming Requirements" describes two
-   approaches to IP address handling in Internet hosts:
-
-   - In the "Strong ES Model", where an ES is a host ("End
-     System"), an IP address is primarily associated with a
-     particular interface.  The host discards packets that arrive
-     on interface A if they are destined for an IP address that is
-     configured on interface B.  The host never sends packets from
-     interface A using a source address configured on interface B.
-
-   - In the "Weak ES Model", an IP address is primarily associated
-     with a host.  The host accepts packets that arrive on any
-     interface if they are destined for any of the host's IP
-     addresses, even if the address is configured on some
-     interface other than the one on which it arrived.  The host
-     does not restrict itself to sending packets from an IP
-     address associated with the originating interface.
-
-   Linux uses the weak ES model.  That means that when packets
-   destined to the VLAN 9 IP address arrive on eth0 and are bridged to
-   br0, the kernel IP stack accepts them there for the VLAN 9 IP
-   address, even though they were not received on vlan9, the network
-   device for vlan9.
-
-   To simulate the strong ES model on Linux, one may add iptables rule
-   to filter packets based on source and destination address and
-   adjust ARP configuration with sysctls.
-
-   BSD uses the strong ES model.
-
-### Q: My OpenFlow controller doesn't see the VLANs that I expect.
-
-A: The configuration for VLANs in the Open vSwitch database (e.g. via
-   ovs-vsctl) only affects traffic that goes through Open vSwitch's
-   implementation of the OpenFlow "normal switching" action.  By
-   default, when Open vSwitch isn't connected to a controller and
-   nothing has been manually configured in the flow table, all traffic
-   goes through the "normal switching" action.  But, if you set up
-   OpenFlow flows on your own, through a controller or using ovs-ofctl
-   or through other means, then you have to implement VLAN handling
-   yourself.
-
-   You can use "normal switching" as a component of your OpenFlow
-   actions, e.g. by putting "normal" into the lists of actions on
-   ovs-ofctl or by outputting to OFPP_NORMAL from an OpenFlow
-   controller.  In situations where this is not suitable, you can
-   implement VLAN handling yourself, e.g.:
-
-   - If a packet comes in on an access port, and the flow table
-     needs to send it out on a trunk port, then the flow can add
-     the appropriate VLAN tag with the "mod_vlan_vid" action.
-
-   - If a packet comes in on a trunk port, and the flow table
-     needs to send it out on an access port, then the flow can
-     strip the VLAN tag with the "strip_vlan" action.
-
-### Q: I configured ports on a bridge as access ports with different VLAN
-   tags, like this:
-
-       ovs-vsctl add-br br0
-       ovs-vsctl set-controller br0 tcp:192.168.0.10:6653
-       ovs-vsctl add-port br0 eth0
-       ovs-vsctl add-port br0 tap0 tag=9
-       ovs-vsctl add-port br0 tap1 tag=10
-
-   but the VMs running behind tap0 and tap1 can still communicate,
-   that is, they are not isolated from each other even though they are
-   on different VLANs.
-
-A: Do you have a controller configured on br0 (as the commands above
-   do)?  If so, then this is a variant on the previous question, "My
-   OpenFlow controller doesn't see the VLANs that I expect," and you
-   can refer to the answer there for more information.
-
-### Q: How MAC learning works with VLANs?
-
-A: Open vSwitch implements Independent VLAN Learning (IVL) for
-   OFPP_NORMAL action.  I.e. it logically has separate learning tables
-   for each VLANs.
-
-
-## VXLANs
-
-### Q: What's a VXLAN?
-
-A: VXLAN stands for Virtual eXtensible Local Area Network, and is a means
-   to solve the scaling challenges of VLAN networks in a multi-tenant
-   environment. VXLAN is an overlay network which transports an L2 network
-   over an existing L3 network. For more information on VXLAN, please see
-   RFC 7348:
-
-   http://tools.ietf.org/html/rfc7348
-
-### Q: How much of the VXLAN protocol does Open vSwitch currently support?
-
-A: Open vSwitch currently supports the framing format for packets on the
-   wire. There is currently no support for the multicast aspects of VXLAN.
-   To get around the lack of multicast support, it is possible to
-   pre-provision MAC to IP address mappings either manually or from a
-   controller.
-
-### Q: What destination UDP port does the VXLAN implementation in Open vSwitch
-   use?
-
-A: By default, Open vSwitch will use the assigned IANA port for VXLAN, which
-   is 4789. However, it is possible to configure the destination UDP port
-   manually on a per-VXLAN tunnel basis. An example of this configuration is
-   provided below.
-
-       ovs-vsctl add-br br0
-       ovs-vsctl add-port br0 vxlan1 -- set interface vxlan1
-       type=vxlan options:remote_ip=192.168.1.2 options:key=flow
-       options:dst_port=8472
-
-
-## Using OpenFlow
-
-### Q: What versions of OpenFlow does Open vSwitch support?
-
-A: The following table lists the versions of OpenFlow supported by
-   each version of Open vSwitch:
-
-       Open vSwitch      OF1.0  OF1.1  OF1.2  OF1.3  OF1.4  OF1.5  OF1.6
-       ###============   =====  =====  =====  =====  =====  =====  =====
-       1.9 and earlier    yes    ---    ---    ---    ---    ---     ---
-       1.10               yes    ---    [*]    [*]    ---    ---     ---
-       1.11               yes    ---    [*]    [*]    ---    ---     ---
-       2.0                yes    [*]    [*]    [*]    ---    ---     ---
-       2.1                yes    [*]    [*]    [*]    ---    ---     ---
-       2.2                yes    [*]    [*]    [*]    [%]    [*]     ---
-       2.3                yes    yes    yes    yes    [*]    [*]     ---
-       2.4                yes    yes    yes    yes    [*]    [*]     ---
-       2.5                yes    yes    yes    yes    [*]    [*]     [*]
-
-       [*] Supported, with one or more missing features.
-       [%] Experimental, unsafe implementation.
-
-   Open vSwitch 2.3 enables OpenFlow 1.0, 1.1, 1.2, and 1.3 by default
-   in ovs-vswitchd.  In Open vSwitch 1.10 through 2.2, OpenFlow 1.1,
-   1.2, and 1.3 must be enabled manually in ovs-vswitchd.
-
-   Some versions of OpenFlow are supported with missing features and
-   therefore not enabled by default: OpenFlow 1.4 and 1.5, in Open
-   vSwitch 2.3 and later, as well as OpenFlow 1.6 in Open vSwitch 2.5
-   and later.  Also, the OpenFlow 1.6 specification is still under
-   development and thus subject to change.
-
-   In any case, the user may override the default:
-
-   - To enable OpenFlow 1.0, 1.1, 1.2, and 1.3 on bridge br0:
-
-     ovs-vsctl set bridge br0 protocols=OpenFlow10,OpenFlow11,OpenFlow12,OpenFlow13
-
-   - To enable OpenFlow 1.0, 1.1, 1.2, 1.3, 1.4, and 1.5 on bridge br0:
-
-     ovs-vsctl set bridge br0 protocols=OpenFlow10,OpenFlow11,OpenFlow12,OpenFlow13,OpenFlow14,OpenFlow15
-
-   - To enable only OpenFlow 1.0 on bridge br0:
-
-     ovs-vsctl set bridge br0 protocols=OpenFlow10
-
-   All current versions of ovs-ofctl enable only OpenFlow 1.0 by
-   default.  Use the -O option to enable support for later versions of
-   OpenFlow in ovs-ofctl.  For example:
-
-       ovs-ofctl -O OpenFlow13 dump-flows br0
-
-   (Open vSwitch 2.2 had an experimental implementation of OpenFlow
-   1.4 that could cause crashes.  We don't recommend enabling it.)
-
-   [OPENFLOW.rst] in the Open vSwitch source tree tracks support for
-   OpenFlow 1.1 and later features.  When support for OpenFlow 1.4 and
-   1.5 is solidly implemented, Open vSwitch will enable those version
-   by default.
-
-### Q: Does Open vSwitch support MPLS?
-
-A: Before version 1.11, Open vSwitch did not support MPLS.  That is,
-   these versions can match on MPLS Ethernet types, but they cannot
-   match, push, or pop MPLS labels, nor can they look past MPLS labels
-   into the encapsulated packet.
-
-   Open vSwitch versions 1.11, 2.0, and 2.1 have very minimal support
-   for MPLS.  With the userspace datapath only, these versions can
-   match, push, or pop a single MPLS label, but they still cannot look
-   past MPLS labels (even after popping them) into the encapsulated
-   packet.  Kernel datapath support is unchanged from earlier
-   versions.
-
-   Open vSwitch version 2.3 can match, push, or pop a single MPLS
-   label and look past the MPLS label into the encapsulated packet.
-   Both userspace and kernel datapaths will be supported, but MPLS
-   processing always happens in userspace either way, so kernel
-   datapath performance will be disappointing.
-
-   Open vSwitch version 2.4 can match, push, or pop up to 3 MPLS
-   labels and look past the MPLS label into the encapsulated packet.
-   It will have kernel support for MPLS, yielding improved
-   performance.
-
-### Q: I'm getting "error type 45250 code 0".  What's that?
-
-A: This is a Open vSwitch extension to OpenFlow error codes.  Open
-   vSwitch uses this extension when it must report an error to an
-   OpenFlow controller but no standard OpenFlow error code is
-   suitable.
-
-   Open vSwitch logs the errors that it sends to controllers, so the
-   easiest thing to do is probably to look at the ovs-vswitchd log to
-   find out what the error was.
-
-   If you want to dissect the extended error message yourself, the
-   format is documented in include/openflow/nicira-ext.h in the Open
-   vSwitch source distribution.  The extended error codes are
-   documented in include/openvswitch/ofp-errors.h.
-
-Q1: Some of the traffic that I'd expect my OpenFlow controller to see
-    doesn't actually appear through the OpenFlow connection, even
-    though I know that it's going through.
-Q2: Some of the OpenFlow flows that my controller sets up don't seem
-    to apply to certain traffic, especially traffic between OVS and
-    the controller itself.
-
-A: By default, Open vSwitch assumes that OpenFlow controllers are
-   connected "in-band", that is, that the controllers are actually
-   part of the network that is being controlled.  In in-band mode,
-   Open vSwitch sets up special "hidden" flows to make sure that
-   traffic can make it back and forth between OVS and the controllers.
-   These hidden flows are higher priority than any flows that can be
-   set up through OpenFlow, and they are not visible through normal
-   OpenFlow flow table dumps.
-
-   Usually, the hidden flows are desirable and helpful, but
-   occasionally they can cause unexpected behavior.  You can view the
-   full OpenFlow flow table, including hidden flows, on bridge br0
-   with the command:
-
-       ovs-appctl bridge/dump-flows br0
-
-   to help you debug.  The hidden flows are those with priorities
-   greater than 65535 (the maximum priority that can be set with
-   OpenFlow).
-
-   The DESIGN file at the top level of the Open vSwitch source
-   distribution describes the in-band model in detail.
-
-   If your controllers are not actually in-band (e.g. they are on
-   localhost via 127.0.0.1, or on a separate network), then you should
-   configure your controllers in "out-of-band" mode.  If you have one
-   controller on bridge br0, then you can configure out-of-band mode
-   on it with:
-
-       ovs-vsctl set controller br0 connection-mode=out-of-band
-
-### Q: I configured all my controllers for out-of-band control mode but
-   "ovs-appctl bridge/dump-flows" still shows some hidden flows.
-
-A: You probably have a remote manager configured (e.g. with "ovs-vsctl
-   set-manager").  By default, Open vSwitch assumes that managers need
-   in-band rules set up on every bridge.  You can disable these rules
-   on bridge br0 with:
-
-       ovs-vsctl set bridge br0 other-config:disable-in-band=true
-
-   This actually disables in-band control entirely for the bridge, as
-   if all the bridge's controllers were configured for out-of-band
-   control.
-
-### Q: My OpenFlow controller doesn't see the VLANs that I expect.
-
-A: See answer under "VLANs", above.
-
-### Q: I ran "ovs-ofctl add-flow br0 nw_dst=192.168.0.1,actions=drop"
-   but I got a funny message like this:
-
-       ofp_util|INFO|normalization changed ofp_match, details:
-       ofp_util|INFO| pre: nw_dst=192.168.0.1
-       ofp_util|INFO|post:
-
-   and when I ran "ovs-ofctl dump-flows br0" I saw that my nw_dst
-   match had disappeared, so that the flow ends up matching every
-   packet.
-
-A: The term "normalization" in the log message means that a flow
-   cannot match on an L3 field without saying what L3 protocol is in
-   use.  The "ovs-ofctl" command above didn't specify an L3 protocol,
-   so the L3 field match was dropped.
-
-   In this case, the L3 protocol could be IP or ARP.  A correct
-   command for each possibility is, respectively:
-
-       ovs-ofctl add-flow br0 ip,nw_dst=192.168.0.1,actions=drop
-
-   and 
-
-       ovs-ofctl add-flow br0 arp,nw_dst=192.168.0.1,actions=drop
-
-   Similarly, a flow cannot match on an L4 field without saying what
-   L4 protocol is in use.  For example, the flow match "tp_src=1234"
-   is, by itself, meaningless and will be ignored.  Instead, to match
-   TCP source port 1234, write "tcp,tp_src=1234", or to match UDP
-   source port 1234, write "udp,tp_src=1234".
-
-### Q: How can I figure out the OpenFlow port number for a given port?
-
-A: The OFPT_FEATURES_REQUEST message requests an OpenFlow switch to
-   respond with an OFPT_FEATURES_REPLY that, among other information,
-   includes a mapping between OpenFlow port names and numbers.  From a
-   command prompt, "ovs-ofctl show br0" makes such a request and
-   prints the response for switch br0.
-
-   The Interface table in the Open vSwitch database also maps OpenFlow
-   port names to numbers.  To print the OpenFlow port number
-   associated with interface eth0, run:
-
-       ovs-vsctl get Interface eth0 ofport
-
-   You can print the entire mapping with:
-
-       ovs-vsctl -- --columns=name,ofport list Interface
-
-   but the output mixes together interfaces from all bridges in the
-   database, so it may be confusing if more than one bridge exists.
-
-   In the Open vSwitch database, ofport value -1 means that the
-   interface could not be created due to an error.  (The Open vSwitch
-   log should indicate the reason.)  ofport value [] (the empty set)
-   means that the interface hasn't been created yet.  The latter is
-   normally an intermittent condition (unless ovs-vswitchd is not
-   running).
-
-### Q: I added some flows with my controller or with ovs-ofctl, but when I
-   run "ovs-dpctl dump-flows" I don't see them.
-
-A: ovs-dpctl queries a kernel datapath, not an OpenFlow switch.  It
-   won't display the information that you want.  You want to use
-   "ovs-ofctl dump-flows" instead.
-
-### Q: It looks like each of the interfaces in my bonded port shows up
-   as an individual OpenFlow port.  Is that right?
-
-A: Yes, Open vSwitch makes individual bond interfaces visible as
-   OpenFlow ports, rather than the bond as a whole.  The interfaces
-   are treated together as a bond for only a few purposes:
-
-   - Sending a packet to the OFPP_NORMAL port.  (When an OpenFlow
-     controller is not configured, this happens implicitly to
-     every packet.)
-
-   - Mirrors configured for output to a bonded port.
-
-   It would make a lot of sense for Open vSwitch to present a bond as
-   a single OpenFlow port.  If you want to contribute an
-   implementation of such a feature, please bring it up on the Open
-   vSwitch development mailing list at dev at openvswitch.org.
-
-### Q: I have a sophisticated network setup involving Open vSwitch, VMs or
-   multiple hosts, and other components.  The behavior isn't what I
-   expect.  Help!
-
-A: To debug network behavior problems, trace the path of a packet,
-   hop-by-hop, from its origin in one host to a remote host.  If
-   that's correct, then trace the path of the response packet back to
-   the origin.
-
-   The open source tool called "plotnetcfg" can help to understand the
-   relationship between the networking devices on a single host.
-
-   Usually a simple ICMP echo request and reply ("ping") packet is
-   good enough.  Start by initiating an ongoing "ping" from the origin
-   host to a remote host.  If you are tracking down a connectivity
-   problem, the "ping" will not display any successful output, but
-   packets are still being sent.  (In this case the packets being sent
-   are likely ARP rather than ICMP.)
-
-   Tools available for tracing include the following:
-
-   - "tcpdump" and "wireshark" for observing hops across network
-     devices, such as Open vSwitch internal devices and physical
-     wires.
-
-   - "ovs-appctl dpif/dump-flows <br>" in Open vSwitch 1.10 and
-     later or "ovs-dpctl dump-flows <br>" in earlier versions.
-     These tools allow one to observe the actions being taken on
-     packets in ongoing flows.
-
-     See ovs-vswitchd(8) for "ovs-appctl dpif/dump-flows"
-     documentation, ovs-dpctl(8) for "ovs-dpctl dump-flows"
-     documentation, and "Why are there so many different ways to
-     dump flows?" above for some background.
-
-   - "ovs-appctl ofproto/trace" to observe the logic behind how
-     ovs-vswitchd treats packets.  See ovs-vswitchd(8) for
-     documentation.  You can out more details about a given flow
-     that "ovs-dpctl dump-flows" displays, by cutting and pasting
-     a flow from the output into an "ovs-appctl ofproto/trace"
-     command.
-
-   - SPAN, RSPAN, and ERSPAN features of physical switches, to
-     observe what goes on at these physical hops.
-
-   Starting at the origin of a given packet, observe the packet at
-   each hop in turn.  For example, in one plausible scenario, you
-   might:
-
-   1. "tcpdump" the "eth" interface through which an ARP egresses
-      a VM, from inside the VM.
-
-   2. "tcpdump" the "vif" or "tap" interface through which the ARP
-      ingresses the host machine.
-
-   3. Use "ovs-dpctl dump-flows" to spot the ARP flow and observe
-      the host interface through which the ARP egresses the
-      physical machine.  You may need to use "ovs-dpctl show" to
-      interpret the port numbers.  If the output seems surprising,
-      you can use "ovs-appctl ofproto/trace" to observe details of
-      how ovs-vswitchd determined the actions in the "ovs-dpctl
-      dump-flows" output.
-
-   4. "tcpdump" the "eth" interface through which the ARP egresses
-      the physical machine.
-
-   5. "tcpdump" the "eth" interface through which the ARP
-      ingresses the physical machine, at the remote host that
-      receives the ARP.
-
-   6. Use "ovs-dpctl dump-flows" to spot the ARP flow on the
-      remote host that receives the ARP and observe the VM "vif"
-      or "tap" interface to which the flow is directed.  Again,
-      "ovs-dpctl show" and "ovs-appctl ofproto/trace" might help.
-
-   7. "tcpdump" the "vif" or "tap" interface to which the ARP is
-      directed.
-
-   8. "tcpdump" the "eth" interface through which the ARP
-      ingresses a VM, from inside the VM.
-
-   It is likely that during one of these steps you will figure out the
-   problem.  If not, then follow the ARP reply back to the origin, in
-   reverse.
-
-### Q: How do I make a flow drop packets?
-
-A: To drop a packet is to receive it without forwarding it.  OpenFlow
-   explicitly specifies forwarding actions.  Thus, a flow with an
-   empty set of actions does not forward packets anywhere, causing
-   them to be dropped.  You can specify an empty set of actions with
-   "actions=" on the ovs-ofctl command line.  For example:
-
-       ovs-ofctl add-flow br0 priority=65535,actions=
-
-   would cause every packet entering switch br0 to be dropped.
-
-   You can write "drop" explicitly if you like.  The effect is the
-   same.  Thus, the following command also causes every packet
-   entering switch br0 to be dropped:
-
-       ovs-ofctl add-flow br0 priority=65535,actions=drop
-
-   "drop" is not an action, either in OpenFlow or Open vSwitch.
-   Rather, it is only a way to say that there are no actions.
-
-### Q: I added a flow to send packets out the ingress port, like this:
-
-       ovs-ofctl add-flow br0 in_port=2,actions=2
-
-   but OVS drops the packets instead.
-
-A: Yes, OpenFlow requires a switch to ignore attempts to send a packet
-   out its ingress port.  The rationale is that dropping these packets
-   makes it harder to loop the network.  Sometimes this behavior can
-   even be convenient, e.g. it is often the desired behavior in a flow
-   that forwards a packet to several ports ("floods" the packet).
-
-   Sometimes one really needs to send a packet out its ingress port
-   ("hairpin"). In this case, output to OFPP_IN_PORT, which in
-   ovs-ofctl syntax is expressed as just "in_port", e.g.:
-
-       ovs-ofctl add-flow br0 in_port=2,actions=in_port
-
-   This also works in some circumstances where the flow doesn't match
-   on the input port.  For example, if you know that your switch has
-   five ports numbered 2 through 6, then the following will send every
-   received packet out every port, even its ingress port:
-
-       ovs-ofctl add-flow br0 actions=2,3,4,5,6,in_port
-
-   or, equivalently:
-
-       ovs-ofctl add-flow br0 actions=all,in_port
-
-   Sometimes, in complicated flow tables with multiple levels of
-   "resubmit" actions, a flow needs to output to a particular port
-   that may or may not be the ingress port.  It's difficult to take
-   advantage of OFPP_IN_PORT in this situation.  To help, Open vSwitch
-   provides, as an OpenFlow extension, the ability to modify the
-   in_port field.  Whatever value is currently in the in_port field is
-   the port to which outputs will be dropped, as well as the
-   destination for OFPP_IN_PORT.  This means that the following will
-   reliably output to port 2 or to ports 2 through 6, respectively:
-
-       ovs-ofctl add-flow br0 in_port=2,actions=load:0->NXM_OF_IN_PORT[],2
-       ovs-ofctl add-flow br0 actions=load:0->NXM_OF_IN_PORT[],2,3,4,5,6
-
-   If the input port is important, then one may save and restore it on
-   the stack:
-
-        ovs-ofctl add-flow br0 actions=push:NXM_OF_IN_PORT[],\
-                                       load:0->NXM_OF_IN_PORT[],\
-                                       2,3,4,5,6,\
-                                       pop:NXM_OF_IN_PORT[]
-
-### Q: My bridge br0 has host 192.168.0.1 on port 1 and host 192.168.0.2
-   on port 2.  I set up flows to forward only traffic destined to the
-   other host and drop other traffic, like this:
-
-      priority=5,in_port=1,ip,nw_dst=192.168.0.2,actions=2
-      priority=5,in_port=2,ip,nw_dst=192.168.0.1,actions=1
-      priority=0,actions=drop
-
-   But it doesn't work--I don't get any connectivity when I do this.
-   Why?
-
-A: These flows drop the ARP packets that IP hosts use to establish IP
-   connectivity over Ethernet.  To solve the problem, add flows to
-   allow ARP to pass between the hosts:
-
-      priority=5,in_port=1,arp,actions=2
-      priority=5,in_port=2,arp,actions=1
-
-   This issue can manifest other ways, too.  The following flows that
-   match on Ethernet addresses instead of IP addresses will also drop
-   ARP packets, because ARP requests are broadcast instead of being
-   directed to a specific host:
-
-      priority=5,in_port=1,dl_dst=54:00:00:00:00:02,actions=2
-      priority=5,in_port=2,dl_dst=54:00:00:00:00:01,actions=1
-      priority=0,actions=drop
-
-   The solution already described above will also work in this case.
-   It may be better to add flows to allow all multicast and broadcast
-   traffic:
-
-      priority=5,in_port=1,dl_dst=01:00:00:00:00:00/01:00:00:00:00:00,actions=2
-      priority=5,in_port=2,dl_dst=01:00:00:00:00:00/01:00:00:00:00:00,actions=1
-
-### Q: My bridge disconnects from my controller on add-port/del-port.
-
-A: Reconfiguring your bridge can change your bridge's datapath-id because
-   Open vSwitch generates datapath-id from the MAC address of one of its ports.
-   In that case, Open vSwitch disconnects from controllers because there's
-   no graceful way to notify controllers about the change of datapath-id.
-
-   To avoid the behaviour, you can configure datapath-id manually.
-
-      ovs-vsctl set bridge br0 other-config:datapath-id=0123456789abcdef
-
-### Q: My controller complains that OVS is not buffering packets.
-   What's going on?
-
-A: "Packet buffering" is an optional OpenFlow feature, and controllers
-   should detect how many "buffers" an OpenFlow switch implements.  It
-   was recently noticed that OVS implementation of the buffering
-   feature was not compliant to OpenFlow specifications.  Rather than
-   fix it and risk controller incompatibility, the buffering feature
-   is removed as of OVS 2.7.  Controllers are already expected to work
-   properly in cases where the switch can not buffer packets, but
-   sends full packets in "packet-in" messages instead, so this change
-   should not affect existing users.  After the change OVS always
-   sends the 'buffer_id' as 0xffffffff in "packet-in" messages and
-   will send an error response if any other value of this field is
-   included in a "packet-out" or a "flow mod" sent by a controller.
-
-### Q: How does OVS divide flows among buckets in an OpenFlow "select" group?
-
-A: In Open vSwitch 2.3 and earlier, Open vSwitch used the destination
-   Ethernet address to choose a bucket in a select group.
-
-   Open vSwitch 2.4 and later by default hashes the source and
-   destination Ethernet address, VLAN ID, Ethernet type, IPv4/v6
-   source and destination address and protocol, and for TCP and SCTP
-   only, the source and destination ports.  The hash is "symmetric",
-   meaning that exchanging source and destination addresses does not
-   change the bucket selection.
-
-   Select groups in Open vSwitch 2.4 and later can be configured to
-   use a different hash function, using a Netronome extension to the
-   OpenFlow 1.5+ group_mod message.  For more information, see
-   Documentation/group-selection-method-property.txt in the Open
-   vSwitch source tree.  (OpenFlow 1.5 support in Open vSwitch is still
-   experimental.)
-
-### Q: I added a flow to accept packets on VLAN 123 and output them on
-   VLAN 456, like so:
-
-       ovs-ofctl add-flow br0 dl_vlan=123,actions=output:1,mod_vlan_vid:456
-
-   but the packets are actually being output in VLAN 123.  Why?
-
-A: OpenFlow actions are executed in the order specified.  Thus, the
-   actions above first output the packet, then change its VLAN.  Since
-   the output occurs before changing the VLAN, the change in VLAN will
-   have no visible effect.
-
-   To solve this and similar problems, order actions so that changes
-   to headers happen before output, e.g.:
-
-       ovs-ofctl add-flow br0 dl_vlan=123,actions=mod_vlan_vid:456,output:1
-
-### Q: The "learn" action can't learn the action I want, can you improve it?
-
-A: By itself, the "learn" action can only put two kinds of actions
-   into the flows that it creates: "load" and "output" actions.  If
-   "learn" is used in isolation, these are severe limits.
-
-   However, "learn" is not meant to be used in isolation.  It is a
-   primitive meant to be used together with other Open vSwitch
-   features to accomplish a task.  Its existing features are enough to
-   accomplish most tasks.
-
-   Here is an outline of a typical pipeline structure that allows for
-   versatile behavior using "learn":
-
-     - Flows in table A contain a "learn" action, that populates flows
-       in table L, that use a "load" action to populate register R
-       with information about what was learned.
-
-     - Flows in table B contain two sequential resubmit actions: one
-       to table L and another one to table B+1.
-
-     - Flows in table B+1 match on register R and act differently
-       depending on what the flows in table L loaded into it.
-
-   This approach can be used to implement many "learn"-based features.
-   For example:
-
-     - Resubmit to a table selected based on learned information, e.g. see:
-       http://openvswitch.org/pipermail/discuss/2016-June/021694.html
-
-     - MAC learning in the middle of a pipeline, as described in
-       [Tutorial.md].
-
-     - TCP state based firewalling, by learning outgoing connections
-       based on SYN packets and matching them up with incoming
-       packets.
-
-     - At least some of the features described in T. A. Hoff,
-       "Extending Open vSwitch to Facilitate Creation of Stateful SDN
-       Applications".
-
-
-## Development
-
-### Q: How do I implement a new OpenFlow message?
-
-A: Add your new message to "enum ofpraw" and "enum ofptype" in
-   lib/ofp-msgs.h, following the existing pattern.  Then recompile and
-   fix all of the new warnings, implementing new functionality for the
-   new message as needed.  (If you configure with --enable-Werror, as
-   described in [INSTALL.rst], then it is impossible to miss any warnings.)
-
-   If you need to add an OpenFlow vendor extension message for a
-   vendor that doesn't yet have any extension messages, then you will
-   also need to edit build-aux/extract-ofp-msgs.
-
-### Q: How do I add support for a new field or header?
-
-A: Add new members for your field to "struct flow" in lib/flow.h, and
-   add new enumerations for your new field to "enum mf_field_id" in
-   lib/meta-flow.h, following the existing pattern.  Also, add support
-   to miniflow_extract() in lib/flow.c for extracting your new field
-   from a packet into struct miniflow, and to nx_put_raw() in
-   lib/nx-match.c to output your new field in OXM matches.  Then
-   recompile and fix all of the new warnings, implementing new
-   functionality for the new field or header as needed.  (If you
-   configure with --enable-Werror, as described in [INSTALL.rst], then
-   it is impossible to miss any warnings.)
-
-   If you want kernel datapath support for your new field, you also
-   need to modify the kernel module for the operating systems you are
-   interested in.  This isn't mandatory, since fields understood only
-   by userspace work too (with a performance penalty), so it's
-   reasonable to start development without it.  If you implement
-   kernel module support for Linux, then the Linux kernel "netdev"
-   mailing list is the place to submit that support first; please read
-   up on the Linux kernel development process separately.  The Windows
-   datapath kernel module support, on the other hand, is maintained
-   within the OVS tree, so patches for that can go directly to
-   ovs-dev.
-
-### Q: How do I add support for a new OpenFlow action?
-
-A: Add your new action to "enum ofp_raw_action_type" in
-   lib/ofp-actions.c, following the existing pattern.  Then recompile
-   and fix all of the new warnings, implementing new functionality for
-   the new action as needed.  (If you configure with --enable-Werror,
-   as described in [INSTALL.rst], then it is impossible to miss any
-   warnings.)
-
-   If you need to add an OpenFlow vendor extension action for a vendor
-   that doesn't yet have any extension actions, then you will also
-   need to edit build-aux/extract-ofp-actions.
-
-
-Contact 
--------
-
-bugs at openvswitch.org
-http://openvswitch.org/
-
-[PORTING.rst]:PORTING.rst
-[WHY-OVS.rst]:WHY-OVS.rst
-[INSTALL.rst]:INSTALL.rst
-[OPENFLOW.rst]:OPENFLOW.rst
-[INSTALL.DPDK.rst]:INSTALL.DPDK.rst
-[Tutorial.md]:tutorial/Tutorial.md
-[release-process.md]:Documentation/release-process.md
diff --git a/FAQ.rst b/FAQ.rst
new file mode 100644
index 0000000..328e87a
--- /dev/null
+++ b/FAQ.rst
@@ -0,0 +1,2091 @@
+..
+   Licensed under the Apache License, Version 2.0 (the "License"); you may
+   not use this file except in compliance with the License. You may obtain
+   a copy of the License at
+
+       http://www.apache.org/licenses/LICENSE-2.0
+
+   Unless required by applicable law or agreed to in writing, software
+   distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
+   WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
+   License for the specific language governing permissions and limitations
+   under the License.
+
+   Convention for heading levels in Open vSwitch documentation:
+
+   =======  Heading 0 (reserved for the title in a document)
+   -------  Heading 1
+   ~~~~~~~  Heading 2
+   +++++++  Heading 3
+   '''''''  Heading 4
+
+   Avoid deeper levels because they do not render well.
+
+==========================
+Frequently Asked Questions
+==========================
+
+General
+-------
+
+Q: What is Open vSwitch?
+
+    A: Open vSwitch is a production quality open source software switch
+    designed to be used as a vswitch in virtualized server environments.  A
+    vswitch forwards traffic between different VMs on the same physical host
+    and also forwards traffic between VMs and the physical network.  Open
+    vSwitch supports standard management interfaces (e.g. sFlow, NetFlow,
+    IPFIX, RSPAN, CLI), and is open to programmatic extension and control using
+    OpenFlow and the OVSDB management protocol.
+
+    Open vSwitch as designed to be compatible with modern switching chipsets.
+    This means that it can be ported to existing high-fanout switches allowing
+    the same flexible control of the physical infrastructure as the virtual
+    infrastructure.  It also means that Open vSwitch will be able to take
+    advantage of on-NIC switching chipsets as their functionality matures.
+
+Q: What virtualization platforms can use Open vSwitch?
+
+    A: Open vSwitch can currently run on any Linux-based virtualization
+    platform (kernel 3.10 and newer), including: KVM, VirtualBox, Xen, Xen
+    Cloud Platform, XenServer. As of Linux 3.3 it is part of the mainline
+    kernel.  The bulk of the code is written in platform- independent C and is
+    easily ported to other environments.  We welcome inquires about integrating
+    Open vSwitch with other virtualization platforms.
+
+Q: How can I try Open vSwitch?
+
+    A: The Open vSwitch source code can be built on a Linux system.  You can
+    build and experiment with Open vSwitch on any Linux machine.  Packages for
+    various Linux distributions are available on many platforms, including:
+    Debian, Ubuntu, Fedora.
+
+    You may also download and run a virtualization platform that already has
+    Open vSwitch integrated.  For example, download a recent ISO for XenServer
+    or Xen Cloud Platform.  Be aware that the version integrated with a
+    particular platform may not be the most recent Open vSwitch release.
+
+Q: Does Open vSwitch only work on Linux?
+
+    A: No, Open vSwitch has been ported to a number of different operating
+    systems and hardware platforms.  Most of the development work occurs on
+    Linux, but the code should be portable to any POSIX system.  We've seen
+    Open vSwitch ported to a number of different platforms, including FreeBSD,
+    Windows, and even non-POSIX embedded systems.
+
+    By definition, the Open vSwitch Linux kernel module only works on Linux and
+    will provide the highest performance.  However, a userspace datapath is
+    available that should be very portable.
+
+Q: What's involved with porting Open vSwitch to a new platform or switching ASIC?
+
+    A: The `porting document <PORTING.rst>`__ describes how one would go about
+    porting Open vSwitch to a new operating system or hardware platform.
+
+Q: Why would I use Open vSwitch instead of the Linux bridge?
+
+    A: Open vSwitch is specially designed to make it easier to manage VM
+    network configuration and monitor state spread across many physical hosts
+    in dynamic virtualized environments.  Refer to `WHY-OVS <WHY-OVS.rst>`__
+    for a more detailed description of how Open vSwitch relates to the Linux
+    Bridge.
+
+Q: How is Open vSwitch related to distributed virtual switches like the VMware
+vNetwork distributed switch or the Cisco Nexus 1000V?
+
+    A: Distributed vswitch applications (e.g., VMware vNetwork distributed
+    switch, Cisco Nexus 1000V) provide a centralized way to configure and
+    monitor the network state of VMs that are spread across many physical
+    hosts.  Open vSwitch is not a distributed vswitch itself, rather it runs on
+    each physical host and supports remote management in a way that makes it
+    easier for developers of virtualization/cloud management platforms to offer
+    distributed vswitch capabilities.
+
+    To aid in distribution, Open vSwitch provides two open protocols that are
+    specially designed for remote management in virtualized network
+    environments: OpenFlow, which exposes flow-based forwarding state, and the
+    OVSDB management protocol, which exposes switch port state.  In addition to
+    the switch implementation itself, Open vSwitch includes tools (ovs-ofctl,
+    ovs-vsctl) that developers can script and extend to provide distributed
+    vswitch capabilities that are closely integrated with their virtualization
+    management platform.
+
+Q: Why doesn't Open vSwitch support distribution?
+
+    A: Open vSwitch is intended to be a useful component for building flexible
+    network infrastructure. There are many different approaches to distribution
+    which balance trade-offs between simplicity, scalability, hardware
+    compatibility, convergence times, logical forwarding model, etc. The goal
+    of Open vSwitch is to be able to support all as a primitive building block
+    rather than choose a particular point in the distributed design space.
+
+Q: How can I contribute to the Open vSwitch Community?
+
+    A: You can start by joining the mailing lists and helping to answer
+    questions.  You can also suggest improvements to documentation.  If you
+    have a feature or bug you would like to work on, send a mail to `one of the
+    mailing lists `http://openvswitch.org/mlists/>`__
+
+Q: Why can I no longer connect to my OpenFlow controller or OVSDB manager?
+
+    A: Starting in OVS 2.4, we switched the default ports to the IANA-specified
+    port numbers for OpenFlow (6633->6653) and OVSDB (6632->6640).  We
+    recommend using these port numbers, but if you cannot, all the programs
+    allow overriding the default port.  See the appropriate man page.
+
+Releases
+--------
+
+Q: What does it mean for an Open vSwitch release to be LTS (long-term support)?
+
+    A: All official releases have been through a comprehensive testing process
+    and are suitable for production use.  Planned releases occur twice a year.
+    If a significant bug is identified in an LTS release, we will provide an
+    updated release that includes the fix.  Releases that are not LTS may not
+    be fixed and may just be supplanted by the next major release.  The current
+    LTS release is 2.3.x.
+
+    For more information on the Open vSwitch release process, refer `release
+    process <release-process.md>`__.
+
+Q: What Linux kernel versions does each Open vSwitch release work with?
+
+    A: The following table lists the Linux kernel versions against which the
+    given versions of the Open vSwitch kernel module will successfully build.
+    The Linux kernel versions are upstream kernel versions, so Linux kernels
+    modified from the upstream sources may not build in some cases even if they
+    are based on a supported version.  This is most notably true of Red Hat
+    Enterprise Linux (RHEL) kernels, which are extensively modified from
+    upstream.
+
+    ============ ==============
+    Open vSwitch Linux kernel
+    ============ ==============
+    1.4.x        2.6.18 to 3.2
+    1.5.x        2.6.18 to 3.2
+    1.6.x        2.6.18 to 3.2
+    1.7.x        2.6.18 to 3.3
+    1.8.x        2.6.18 to 3.4
+    1.9.x        2.6.18 to 3.8
+    1.10.x       2.6.18 to 3.8
+    1.11.x       2.6.18 to 3.8
+    2.0.x        2.6.32 to 3.10
+    2.1.x        2.6.32 to 3.11
+    2.3.x        2.6.32 to 3.14
+    2.4.x        2.6.32 to 4.0
+    2.5.x        2.6.32 to 4.3
+    2.6.x        3.10 to 4.7
+    ============ ==============
+
+    Open vSwitch userspace should also work with the Linux kernel module built
+    into Linux 3.3 and later.
+
+    Open vSwitch userspace is not sensitive to the Linux kernel version.  It
+    should build against almost any kernel, certainly against 2.6.32 and later.
+
+Q: Are all features available with all datapaths?
+
+    A: Open vSwitch supports different datapaths on different platforms.  Each
+    datapath has a different feature set: the following tables try to summarize
+    the status.
+
+    Supported datapaths:
+
+    Linux upstream
+      The datapath implemented by the kernel module shipped with Linux
+      upstream.  Since features have been gradually introduced into the kernel,
+      the table mentions the first Linux release whose OVS module supports the
+      feature.
+
+    Linux OVS tree
+      The datapath implemented by the Linux kernel module distributed with the
+      OVS source tree.
+
+    Userspace
+      Also known as DPDK, dpif-netdev or dummy datapath. It is the only
+      datapath that works on NetBSD, FreeBSD and Mac OSX.
+
+    Hyper-V
+      Also known as the Windows datapath.
+
+    The following table lists the datapath supported features from an Open
+    vSwitch user's perspective.
+
+    ===================== ============== ============== ========= =======
+    Feature               Linux upstream Linux OVS tree Userspace Hyper-V
+    ===================== ============== ============== ========= =======
+    NAT                   4.6            YES            NO        NO
+    Connection tracking   4.3            YES            PARTIAL   PARTIAL
+    Tunnel - LISP         NO             YES            NO        NO
+    Tunnel - STT          NO             YES            NO        YES
+    Tunnel - GRE          3.11           YES            YES       YES
+    Tunnel - VXLAN        3.12           YES            YES       YES
+    Tunnel - Geneve       3.18           YES            YES       YES
+    Tunnel - GRE-IPv6     NO             NO             YES       NO
+    Tunnel - VXLAN-IPv6   4.3            YES            YES       NO
+    Tunnel - Geneve-IPv6  4.4            YES            YES       NO
+    QoS - Policing        YES            YES            YES       NO
+    QoS - Shaping         YES            YES            NO        NO
+    sFlow                 YES            YES            YES       NO
+    IPFIX                 3.10           YES            YES       NO
+    Set action            YES            YES            YES       PARTIAL
+    NIC Bonding           YES            YES            YES       NO
+    Multiple VTEPs        YES            YES            YES       NO
+    ===================== ============== ============== ========= =======
+
+    Do note, however:
+
+    * Only a limited set of flow fields is modifiable via the set action by the
+      Hyper-V datapath.
+    * The Hyper-V datapath only supports one physical NIC per datapath. This is
+      why bonding is not supported.
+    * The Hyper-V datapath can have at most one IP address configured as a
+      tunnel endpoint.
+
+    The following table lists features that do not *directly* impact an Open
+    vSwitch user, e.g. because their absence can be hidden by the ofproto layer
+    (usually this comes with a performance penalty).
+
+    ===================== ============== ============== ========= =======
+    Feature               Linux upstream Linux OVS tree Userspace Hyper-V
+    ===================== ============== ============== ========= =======
+    SCTP flows            3.12           YES            YES       YES
+    MPLS                  3.19           YES            YES       YES
+    UFID                  4.0            YES            YES       NO
+    Megaflows             3.12           YES            YES       NO
+    Masked set action     4.0            YES            YES       NO
+    Recirculation         3.19           YES            YES       YES
+    TCP flags matching    3.13           YES            YES       NO
+    Validate flow actions YES            YES            N/A       NO
+    Multiple datapaths    YES            YES            YES       NO
+    Tunnel TSO - STT      N/A            YES            NO        YES
+    ===================== ============== ============== ========= =======
+
+Q: What DPDK version does each Open vSwitch release work with?
+
+    A: The following table lists the DPDK version against which the given
+    versions of Open vSwitch will successfully build.
+
+    ============ =====
+    Open vSwitch DPDK
+    ============ =====
+    2.2.x        1.6
+    2.3.x        1.6
+    2.4.x        2.0
+    2.5.x        2.2
+    2.6.x        16.07
+    ============ =====
+
+Q: I get an error like this when I configure Open vSwitch:::
+
+    configure: error: Linux kernel in <dir> is version <x>, but
+    version newer than <y> is not supported (please refer to the
+    FAQ for advice)
+
+What should I do?
+
+    A: You have the following options:
+
+    - Use the Linux kernel module supplied with the kernel that you are using.
+      (See also the following FAQ.)
+
+    - If there is a newer released version of Open vSwitch, consider building
+      that one, because it may support the kernel that you are building
+      against.  (To find out, consult the table in the previous FAQ.)
+
+    - The Open vSwitch "master" branch may support the kernel that you are
+      using, so consider building the kernel module from "master".
+
+    All versions of Open vSwitch userspace are compatible with all versions of
+    the Open vSwitch kernel module, so you do not have to use the kernel module
+    from one source along with the userspace programs from the same source.
+
+Q: What features are not available in the Open vSwitch kernel datapath that
+ships as part of the upstream Linux kernel?
+
+    A: The kernel module in upstream Linux does not include support for LISP.
+    Work is in progress to add support for LISP to the upstream Linux version
+    of the Open vSwitch kernel module. For now, if you need this feature, use
+    the kernel module from the Open vSwitch distribution instead of the
+    upstream Linux kernel module.
+
+    Certain features require kernel support to function or to have reasonable
+    performance. If the ovs-vswitchd log file indicates that a feature is not
+    supported, consider upgrading to a newer upstream Linux release or using
+    the kernel module paired with the userspace distribution.
+
+Q: Why do tunnels not work when using a kernel module other than the one
+packaged with Open vSwitch?
+
+    A: Support for tunnels was added to the upstream Linux kernel module after
+    the rest of Open vSwitch. As a result, some kernels may contain support for
+    Open vSwitch but not tunnels. The minimum kernel version that supports each
+    tunnel protocol is:
+
+    ======== ============
+    Protocol Linux Kernel
+    ======== ============
+    GRE      3.11
+    VXLAN    3.12
+    Geneve   3.18
+    LISP     not upstream
+    STT      not upstream
+    ======== ============
+
+    If you are using a version of the kernel that is older than the one listed
+    above, it is still possible to use that tunnel protocol. However, you must
+    compile and install the kernel module included with the Open vSwitch
+    distribution rather than the one on your machine. If problems persist after
+    doing this, check to make sure that the module that is loaded is the one
+    you expect.
+
+Q: Why are UDP tunnel checksums not computed for VXLAN or Geneve?
+
+    A: Generating outer UDP checksums requires kernel support that was not part
+    of the initial implementation of these protocols. If using the upstream
+    Linux Open vSwitch module, you must use kernel 4.0 or newer. The
+    out-of-tree modules from Open vSwitch release 2.4 and later support UDP
+    checksums.
+
+Q: What features are not available when using the userspace datapath?
+
+    A: Tunnel virtual ports are not supported, as described in the previous
+    answer.  It is also not possible to use queue-related actions.  On Linux
+    kernels before 2.6.39, maximum-sized VLAN packets may not be transmitted.
+
+Q: Should userspace or kernel be upgraded first to minimize downtime?
+
+    A. In general, the Open vSwitch userspace should be used with the kernel
+    version included in the same release or with the version from upstream
+    Linux.  However, when upgrading between two releases of Open vSwitch it is
+    best to migrate userspace first to reduce the possibility of
+    incompatibilities.
+
+Q: What happened to the bridge compatibility feature?
+
+    A: Bridge compatibility was a feature of Open vSwitch 1.9 and earlier.
+    When it was enabled, Open vSwitch imitated the interface of the Linux
+    kernel "bridge" module.  This allowed users to drop Open vSwitch into
+    environments designed to use the Linux kernel bridge module without
+    adapting the environment to use Open vSwitch.
+
+    Open vSwitch 1.10 and later do not support bridge compatibility.  The
+    feature was dropped because version 1.10 adopted a new internal
+    architecture that made bridge compatibility difficult to maintain.  Now
+    that many environments use OVS directly, it would be rarely useful in any
+    case.
+
+    To use bridge compatibility, install OVS 1.9 or earlier, including the
+    accompanying kernel modules (both the main and bridge compatibility
+    modules), following the instructions that come with the release.  Be sure
+    to start the ovs-brcompatd daemon.
+
+Terminology
+-----------
+
+Q: I thought Open vSwitch was a virtual Ethernet switch, but the documentation
+keeps talking about bridges.  What's a bridge?
+
+    A: In networking, the terms "bridge" and "switch" are synonyms.  Open
+    vSwitch implements an Ethernet switch, which means that it is also an
+    Ethernet bridge.
+
+Q: What's a VLAN?
+
+    A: See the "VLAN" section below.
+
+Basic Configuration
+-------------------
+
+Q: How do I configure a port as an access port?
+
+    A. Add ``tag=VLAN`` to your ``ovs-vsctl add-port`` command. For example,
+    the following commands configure br0 with eth0 as a trunk port (the
+    default) and tap0 as an access port for VLAN 9:
+
+    ::
+
+        $ ovs-vsctl add-br br0
+        $ ovs-vsctl add-port br0 eth0
+        $ ovs-vsctl add-port br0 tap0 tag=9
+
+    If you want to configure an already added port as an access port, use
+    ``ovs-vsctl set``, e.g.:
+
+    ::
+
+        $ ovs-vsctl set port tap0 tag=9
+
+Q: How do I configure a port as a SPAN port, that is, enable mirroring of all
+traffic to that port?
+
+    A. The following commands configure br0 with eth0 and tap0 as trunk ports.
+    All traffic coming in or going out on eth0 or tap0 is also mirrored to
+    tap1; any traffic arriving on tap1 is dropped:
+
+    ::
+
+        $ ovs-vsctl add-br br0
+        $ ovs-vsctl add-port br0 eth0
+        $ ovs-vsctl add-port br0 tap0
+        $ ovs-vsctl add-port br0 tap1 \
+            -- --id=@p get port tap1 \
+            -- --id=@m create mirror name=m0 select-all=true output-port=@p \
+            -- set bridge br0 mirrors=@m
+
+    To later disable mirroring, run:
+
+    ::
+
+        $ ovs-vsctl clear bridge br0 mirrors
+
+Q: Does Open vSwitch support configuring a port in promiscuous mode?
+
+    A: Yes.  How you configure it depends on what you mean by "promiscuous
+    mode":
+
+    - Conventionally, "promiscuous mode" is a feature of a network interface
+      card.  Ordinarily, a NIC passes to the CPU only the packets actually
+      destined to its host machine.  It discards the rest to avoid wasting
+      memory and CPU cycles.  When promiscuous mode is enabled, however, it
+      passes every packet to the CPU.  On an old-style shared-media or
+      hub-based network, this allows the host to spy on all packets on the
+      network.  But in the switched networks that are almost everywhere these
+      days, promiscuous mode doesn't have much effect, because few packets not
+      destined to a host are delivered to the host's NIC.
+
+      This form of promiscuous mode is configured in the guest OS of the VMs on
+      your bridge, e.g. with "ifconfig".
+
+    - The VMware vSwitch uses a different definition of "promiscuous mode".
+      When you configure promiscuous mode on a VMware vNIC, the vSwitch sends a
+      copy of every packet received by the vSwitch to that vNIC.  That has a
+      much bigger effect than just enabling promiscuous mode in a guest OS.
+      Rather than getting a few stray packets for which the switch does not yet
+      know the correct destination, the vNIC gets every packet.  The effect is
+      similar to replacing the vSwitch by a virtual hub.
+
+      This "promiscuous mode" is what switches normally call "port mirroring"
+      or "SPAN".  For information on how to configure SPAN, see "How do I
+      configure a port as a SPAN port, that is, enable mirroring of all traffic
+      to that port?"
+
+Q: How do I configure a DPDK port as an access port?
+
+    A: Firstly, you must have a DPDK-enabled version of Open vSwitch.
+
+    If your version is DPDK-enabled it will support the other-config:dpdk-init
+    configuration in the database and will display lines with "EAL:..." during
+    startup when other_config:dpdk-init is set to 'true'.
+
+    Secondly, when adding a DPDK port, unlike a system port, the type for the
+    interface must be specified. For example:::
+
+        $ ovs-vsctl add-br br0
+        $ ovs-vsctl add-port br0 dpdk0 -- set Interface dpdk0 type=dpdk
+
+    Finally, it is required that DPDK port names begin with ``dpdk``.
+
+    See `INSTALL.DPDK <INSTALL.DPDK.rst>`__ for more information on enabling
+    and using DPDK with Open vSwitch.
+
+Q: How do I configure a VLAN as an RSPAN VLAN, that is, enable mirroring of all
+traffic to that VLAN?
+
+    A: The following commands configure br0 with eth0 as a trunk port and tap0
+    as an access port for VLAN 10.  All traffic coming in or going out on tap0,
+    as well as traffic coming in or going out on eth0 in VLAN 10, is also
+    mirrored to VLAN 15 on eth0.  The original tag for VLAN 10, in cases where
+    one is present, is dropped as part of mirroring:
+
+    ::
+
+        $ ovs-vsctl add-br br0
+        $ ovs-vsctl add-port br0 eth0
+        $ ovs-vsctl add-port br0 tap0 tag=10
+        $ ovs-vsctl \
+            -- --id=@m create mirror name=m0 select-all=true select-vlan=10 \
+               output-vlan=15 \
+            -- set bridge br0 mirrors=@m
+
+    To later disable mirroring, run:
+
+    ::
+
+        $ ovs-vsctl clear bridge br0 mirrors
+
+    Mirroring to a VLAN can disrupt a network that contains unmanaged switches.
+    See ovs-vswitchd.conf.db(5) for details. Mirroring to a GRE tunnel has
+    fewer caveats than mirroring to a VLAN and should generally be preferred.
+
+Q: Can I mirror more than one input VLAN to an RSPAN VLAN?
+
+    A: Yes, but mirroring to a VLAN strips the original VLAN tag in favor of
+    the specified output-vlan.  This loss of information may make the mirrored
+    traffic too hard to interpret.
+
+    To mirror multiple VLANs, use the commands above, but specify a
+    comma-separated list of VLANs as the value for select-vlan.  To mirror
+    every VLAN, use the commands above, but omit select-vlan and its value
+    entirely.
+
+    When a packet arrives on a VLAN that is used as a mirror output VLAN, the
+    mirror is disregarded.  Instead, in standalone mode, OVS floods the packet
+    across all the ports for which the mirror output VLAN is configured.  (If
+    an OpenFlow controller is in use, then it can override this behavior
+    through the flow table.)  If OVS is used as an intermediate switch, rather
+    than an edge switch, this ensures that the RSPAN traffic is distributed
+    through the network.
+
+    Mirroring to a VLAN can disrupt a network that contains unmanaged switches.
+    See ovs-vswitchd.conf.db(5) for details.  Mirroring to a GRE tunnel has
+    fewer caveats than mirroring to a VLAN and should generally be preferred.
+
+Q: How do I configure mirroring of all traffic to a GRE tunnel?
+
+    A: The following commands configure br0 with eth0 and tap0 as trunk ports.
+    All traffic coming in or going out on eth0 or tap0 is also mirrored to
+    gre0, a GRE tunnel to the remote host 192.168.1.10; any traffic arriving on
+    gre0 is dropped:::
+
+        $ ovs-vsctl add-br br0
+        $ ovs-vsctl add-port br0 eth0
+        $ ovs-vsctl add-port br0 tap0
+        $ ovs-vsctl add-port br0 gre0 \
+             -- set interface gre0 type=gre options:remote_ip=192.168.1.10 \
+             -- --id=@p get port gre0 \
+             -- --id=@m create mirror name=m0 select-all=true output-port=@p \
+             -- set bridge br0 mirrors=@m
+
+    To later disable mirroring and destroy the GRE tunnel:::
+
+        $ ovs-vsctl clear bridge br0 mirrors
+        $ ovs-vsctl del-port br0 gre0
+
+Q: Does Open vSwitch support ERSPAN?
+
+    A: No.  As an alternative, Open vSwitch supports mirroring to a GRE tunnel
+    (see above).
+
+Q: How do I connect two bridges?
+
+    A: First, why do you want to do this?  Two connected bridges are not much
+    different from a single bridge, so you might as well just have a single
+    bridge with all your ports on it.
+
+    If you still want to connect two bridges, you can use a pair of patch
+    ports.  The following example creates bridges br0 and br1, adds eth0 and
+    tap0 to br0, adds tap1 to br1, and then connects br0 and br1 with a pair of
+    patch ports.
+
+    ::
+
+        $ ovs-vsctl add-br br0
+        $ ovs-vsctl add-port br0 eth0
+        $ ovs-vsctl add-port br0 tap0
+        $ ovs-vsctl add-br br1
+        $ ovs-vsctl add-port br1 tap1
+        $ ovs-vsctl \
+            -- add-port br0 patch0 \
+            -- set interface patch0 type=patch options:peer=patch1 \
+            -- add-port br1 patch1 \
+            -- set interface patch1 type=patch options:peer=patch0
+
+    Bridges connected with patch ports are much like a single bridge. For
+    instance, if the example above also added eth1 to br1, and both eth0 and
+    eth1 happened to be connected to the same next-hop switch, then you could
+    loop your network just as you would if you added eth0 and eth1 to the same
+    bridge (see the "Configuration Problems" section below for more
+    information).
+
+    If you are using Open vSwitch 1.9 or an earlier version, then you need to
+    be using the kernel module bundled with Open vSwitch rather than the one
+    that is integrated into Linux 3.3 and later, because Open vSwitch 1.9 and
+    earlier versions need kernel support for patch ports. This also means that
+    in Open vSwitch 1.9 and earlier, patch ports will not work with the
+    userspace datapath, only with the kernel module.
+
+Q: How do I configure a bridge without an OpenFlow local port?  (Local port in
+the sense of OFPP_LOCAL)
+
+    A: Open vSwitch does not support such a configuration.  Bridges always have
+    their local ports.
+
+Implementation Details
+----------------------
+
+Q: I hear OVS has a couple of kinds of flows.  Can you tell me about them?
+
+    A: Open vSwitch uses different kinds of flows for different purposes:
+
+    - OpenFlow flows are the most important kind of flow.  OpenFlow controllers
+      use these flows to define a switch's policy.  OpenFlow flows support
+      wildcards, priorities, and multiple tables.
+
+      When in-band control is in use, Open vSwitch sets up a few "hidden"
+      flows, with priority higher than a controller or the user can configure,
+      that are not visible via OpenFlow.  (See the "Controller" section of the
+      FAQ for more information about hidden flows.)
+
+    - The Open vSwitch software switch implementation uses a second kind of
+      flow internally.  These flows, called "datapath" or "kernel" flows, do
+      not support priorities and comprise only a single table, which makes them
+      suitable for caching.  (Like OpenFlow flows, datapath flows do support
+      wildcarding, in Open vSwitch 1.11 and later.)  OpenFlow flows and
+      datapath flows also support different actions and number ports
+      differently.
+
+      Datapath flows are an implementation detail that is subject to change in
+      future versions of Open vSwitch.  Even with the current version of Open
+      vSwitch, hardware switch implementations do not necessarily use this
+      architecture.
+
+Users and controllers directly control only the OpenFlow flow table.  Open
+vSwitch manages the datapath flow table itself, so users should not normally be
+concerned with it.
+
+Q: Why are there so many different ways to dump flows?
+
+    A: Open vSwitch has two kinds of flows (see the previous question), so it
+    has commands with different purposes for dumping each kind of flow:
+
+    - ``ovs-ofctl dump-flows <br>`` dumps OpenFlow flows, excluding hidden
+      flows.  This is the most commonly useful form of flow dump.  (Unlike the
+      other commands, this should work with any OpenFlow switch, not just Open
+      vSwitch.)
+
+    - ``ovs-appctl bridge/dump-flows <br>`` dumps OpenFlow flows, including
+      hidden flows.  This is occasionally useful for troubleshooting suspected
+      issues with in-band control.
+
+    - ``ovs-dpctl dump-flows [dp]`` dumps the datapath flow table entries for a
+      Linux kernel-based datapath.  In Open vSwitch 1.10 and later,
+      ovs-vswitchd merges multiple switches into a single datapath, so it will
+      show all the flows on all your kernel-based switches.  This command can
+      occasionally be useful for debugging.
+
+    - ``ovs-appctl dpif/dump-flows <br>``, new in Open vSwitch 1.10, dumps
+      datapath flows for only the specified bridge, regardless of the type.
+
+Q: How does multicast snooping works with VLANs?
+
+    A: Open vSwitch maintains snooping tables for each VLAN.
+
+Q: Can OVS populate the kernel flow table in advance instead of in reaction to
+packets?
+
+    A: No.  There are several reasons:
+
+    - Kernel flows are not as sophisticated as OpenFlow flows, which means that
+      some OpenFlow policies could require a large number of kernel flows.  The
+      "conjunctive match" feature is an extreme example: the number of kernel
+      flows it requires is the product of the number of flows in each
+      dimension.
+
+    - With multiple OpenFlow flow tables and simple sets of actions, the number
+      of kernel flows required can be as large as the product of the number of
+      flows in each dimension.  With more sophisticated actions, the number of
+      kernel flows could be even larger.
+
+    - Open vSwitch is designed so that any version of OVS userspace
+      interoperates with any version of the OVS kernel module.  This forward
+      and backward compatibility requires that userspace observe how the kernel
+      module parses received packets.  This is only possible in a
+      straightforward way when userspace adds kernel flows in reaction to
+      received packets.
+
+    For more relevant information on the architecture of Open vSwitch, please
+    read "The Design and Implementation of Open vSwitch", published in USENIX
+    NSDI 2015.
+
+Performance
+-----------
+
+Q: I just upgraded and I see a performance drop.  Why?
+
+    A: The OVS kernel datapath may have been updated to a newer version than
+    the OVS userspace components.  Sometimes new versions of OVS kernel module
+    add functionality that is backwards compatible with older userspace
+    components but may cause a drop in performance with them.  Especially, if a
+    kernel module from OVS 2.1 or newer is paired with OVS userspace 1.10 or
+    older, there will be a performance drop for TCP traffic.
+
+    Updating the OVS userspace components to the latest released version should
+    fix the performance degradation.
+
+To get the best possible performance and functionality, it is recommended to
+pair the same versions of the kernel module and OVS userspace.
+
+Configuration Problems
+----------------------
+
+Q: I created a bridge and added my Ethernet port to it, using commands like
+these:::
+
+    ovs-vsctl add-br br0
+    ovs-vsctl add-port br0 eth0
+
+and as soon as I ran the "add-port" command I lost all connectivity through
+eth0.  Help!
+
+    A: A physical Ethernet device that is part of an Open vSwitch bridge should
+    not have an IP address.  If one does, then that IP address will not be
+    fully functional.
+
+    You can restore functionality by moving the IP address to an Open vSwitch
+    "internal" device, such as the network device named after the bridge
+    itself.  For example, assuming that eth0's IP address is 192.168.128.5, you
+    could run the commands below to fix up the situation:::
+
+        $ ifconfig eth0 0.0.0.0
+        $ ifconfig br0 192.168.128.5
+
+    (If your only connection to the machine running OVS is through the IP
+    address in question, then you would want to run all of these commands on a
+    single command line, or put them into a script.)  If there were any
+    additional routes assigned to eth0, then you would also want to use
+    commands to adjust these routes to go through br0.
+
+    If you use DHCP to obtain an IP address, then you should kill the DHCP
+    client that was listening on the physical Ethernet interface (e.g. eth0)
+    and start one listening on the internal interface (e.g. br0).  You might
+    still need to manually clear the IP address from the physical interface
+    (e.g. with "ifconfig eth0 0.0.0.0").
+
+    There is no compelling reason why Open vSwitch must work this way.
+    However, this is the way that the Linux kernel bridge module has always
+    worked, so it's a model that those accustomed to Linux bridging are already
+    used to.  Also, the model that most people expect is not implementable
+    without kernel changes on all the versions of Linux that Open vSwitch
+    supports.
+
+    By the way, this issue is not specific to physical Ethernet devices.  It
+    applies to all network devices except Open vSwitch "internal" devices.
+
+Q: I created a bridge and added a couple of Ethernet ports to it, using
+commands like these:::
+
+    $ ovs-vsctl add-br br0
+    $ ovs-vsctl add-port br0 eth0
+    $ ovs-vsctl add-port br0 eth1
+
+and now my network seems to have melted: connectivity is unreliable (even
+connectivity that doesn't go through Open vSwitch), all the LEDs on my physical
+switches are blinking, wireshark shows duplicated packets, and CPU usage is
+very high.
+
+    A: More than likely, you've looped your network.  Probably, eth0 and eth1
+    are connected to the same physical Ethernet switch.  This yields a scenario
+    where OVS receives a broadcast packet on eth0 and sends it out on eth1,
+    then the physical switch connected to eth1 sends the packet back on eth0,
+    and so on forever.  More complicated scenarios, involving a loop through
+    multiple switches, are possible too.
+
+    The solution depends on what you are trying to do:
+
+    - If you added eth0 and eth1 to get higher bandwidth or higher reliability
+      between OVS and your physical Ethernet switch, use a bond.  The following
+      commands create br0 and then add eth0 and eth1 as a bond:::
+
+          $ ovs-vsctl add-br br0
+          $ ovs-vsctl add-bond br0 bond0 eth0 eth1
+
+      Bonds have tons of configuration options.  Please read the documentation
+      on the Port table in ovs-vswitchd.conf.db(5) for all the details.
+
+      Configuration for DPDK-enabled interfaces is slightly less
+      straightforward: see `INSTALL.DPDK <INSTALL.DPDK.rst>`__.
+
+    - Perhaps you don't actually need eth0 and eth1 to be on the same bridge.
+      For example, if you simply want to be able to connect each of them to
+      virtual machines, then you can put each of them on a bridge of its own:
+
+          $ ovs-vsctl add-br br0
+          $ ovs-vsctl add-port br0 eth0
+
+          $ ovs-vsctl add-br br1
+          $ ovs-vsctl add-port br1 eth1
+
+      and then connect VMs to br0 and br1.  (A potential disadvantage is that
+      traffic cannot directly pass between br0 and br1.  Instead, it will go
+      out eth0 and come back in eth1, or vice versa.)
+
+    - If you have a redundant or complex network topology and you want to
+      prevent loops, turn on spanning tree protocol (STP).  The following
+      commands create br0, enable STP, and add eth0 and eth1 to the bridge.
+      The order is important because you don't want have to have a loop in your
+      network even transiently:::
+
+          $ ovs-vsctl add-br br0
+          $ ovs-vsctl set bridge br0 stp_enable=true
+          $ ovs-vsctl add-port br0 eth0
+          $ ovs-vsctl add-port br0 eth1
+
+      The Open vSwitch implementation of STP is not well tested.  Report any
+      bugs you observe, but if you'd rather avoid acting as a beta tester then
+      another option might be your best shot.
+
+Q: I can't seem to use Open vSwitch in a wireless network.
+
+    A: Wireless base stations generally only allow packets with the source MAC
+    address of NIC that completed the initial handshake.  Therefore, without
+    MAC rewriting, only a single device can communicate over a single wireless
+    link.
+
+    This isn't specific to Open vSwitch, it's enforced by the access point, so
+    the same problems will show up with the Linux bridge or any other way to do
+    bridging.
+
+Q: I can't seem to add my PPP interface to an Open vSwitch bridge.
+
+    A: PPP most commonly carries IP packets, but Open vSwitch works only with
+    Ethernet frames.  The correct way to interface PPP to an Ethernet network
+    is usually to use routing instead of switching.
+
+Q: Is there any documentation on the database tables and fields?
+
+    A: Yes.  ovs-vswitchd.conf.db(5) is a comprehensive reference.
+
+Q: When I run ovs-dpctl I no longer see the bridges I created.  Instead, I only
+see a datapath called "ovs-system".  How can I see datapath information about a
+particular bridge?
+
+    A: In version 1.9.0, OVS switched to using a single datapath that is shared
+    by all bridges of that type.  The ``ovs-appctl dpif/*`` commands provide
+    similar functionality that is scoped by the bridge.
+
+Q: I created a GRE port using ovs-vsctl so why can't I send traffic or see the
+port in the datapath?
+
+    A: On Linux kernels before 3.11, the OVS GRE module and Linux GRE module
+    cannot be loaded at the same time. It is likely that on your system the
+    Linux GRE module is already loaded and blocking OVS (to confirm, check
+    dmesg for errors regarding GRE registration). To fix this, unload all GRE
+    modules that appear in lsmod as well as the OVS kernel module. You can then
+    reload the OVS module following the directions in the `installation guide
+    <INSTALL.rst>`__, which will ensure that dependencies are satisfied.
+
+Q: Open vSwitch does not seem to obey my packet filter rules.
+
+    A: It depends on mechanisms and configurations you want to use.
+
+    You cannot usefully use typical packet filters, like iptables, on physical
+    Ethernet ports that you add to an Open vSwitch bridge.  This is because
+    Open vSwitch captures packets from the interface at a layer lower below
+    where typical packet-filter implementations install their hooks.  (This
+    actually applies to any interface of type "system" that you might add to an
+    Open vSwitch bridge.)
+
+    You can usefully use typical packet filters on Open vSwitch internal ports
+    as they are mostly ordinary interfaces from the point of view of packet
+    filters.
+
+    For example, suppose you create a bridge br0 and add Ethernet port eth0 to
+    it.  Then you can usefully add iptables rules to affect the internal
+    interface br0, but not the physical interface eth0.  (br0 is also where you
+    would add an IP address, as discussed elsewhere in the FAQ.)
+
+    For simple filtering rules, it might be possible to achieve similar results
+    by installing appropriate OpenFlow flows instead.
+
+    If the use of a particular packet filter setup is essential, Open vSwitch
+    might not be the best choice for you.  On Linux, you might want to consider
+    using the Linux Bridge.  (This is the only choice if you want to use
+    ebtables rules.)  On NetBSD, you might want to consider using the bridge(4)
+    with BRIDGE_IPF option.
+
+Q: It seems that Open vSwitch does nothing when I removed a port and then
+immediately put it back.  For example, consider that p1 is a port of
+``type=internal``:::
+
+     $ ovs-vsctl del-port br0 p1 -- \
+         add-port br0 p1 -- \
+         set interface p1 type=internal
+
+    A: It's an expected behaviour.
+
+    If del-port and add-port happen in a single OVSDB transaction as your
+    example, Open vSwitch always "skips" the intermediate steps.  Even if they
+    are done in multiple transactions, it's still allowed for Open vSwitch to
+    skip the intermediate steps and just implement the overall effect.  In both
+    cases, your example would be turned into a no-op.
+
+    If you want to make Open vSwitch actually destroy and then re-create the
+    port for some side effects like resetting kernel setting for the
+    corresponding interface, you need to separate operations into multiple
+    OVSDB transactions and ensure that at least the first one does not have
+    ``--no-wait``.  In the following example, the first ovs-vsctl will block
+    until Open vSwitch reloads the new configuration and removes the port:::
+
+        $ ovs-vsctl del-port br0 p1
+        $ ovs-vsctl add-port br0 p1 -- \
+            set interface p1 type=internal
+
+Q: I want to add thousands of ports to an Open vSwitch bridge, but it takes too
+long (minutes or hours) to do it with ovs-vsctl.  How can I do it faster?
+
+    A: If you add them one at a time with ovs-vsctl, it can take a long time to
+    add thousands of ports to an Open vSwitch bridge.  This is because every
+    invocation of ovs-vsctl first reads the current configuration from OVSDB.
+    As the number of ports grows, this starts to take an appreciable amount of
+    time, and when it is repeated thousands of times the total time becomes
+    significant.
+
+    The solution is to add the ports in one invocation of ovs-vsctl (or a small
+    number of them).  For example, using bash:::
+
+        $ ovs-vsctl add-br br0
+        $ cmds=; for i in {1..5000}; do cmds+=" -- add-port br0 p$i"; done
+        $ ovs-vsctl $cmds
+
+    takes seconds, not minutes or hours, in the OVS sandbox environment.
+
+Q: I created a bridge named br0.  My bridge shows up in "ovs-vsctl show", but
+"ovs-ofctl show br0" just prints "br0 is not a bridge or a socket".
+
+    A: Open vSwitch wasn't able to create the bridge.  Check the ovs-vswitchd
+    log for details (Debian and Red Hat packaging for Open vSwitch put it in
+    /var/log/openvswitch/ovs-vswitchd.log).
+
+    In general, the Open vSwitch database reflects the desired configuration
+    state.  ovs-vswitchd monitors the database and, when it changes,
+    reconfigures the system to reflect the new desired state.  This normally
+    happens very quickly.  Thus, a discrepancy between the database and the
+    actual state indicates that ovs-vswitchd could not implement the
+    configuration, and so one should check the log to find out why.  (Another
+    possible cause is that ovs-vswitchd is not running.  This will make
+    ovs-vsctl commands hang, if they change the configuration, unless one
+    specifies ``--no-wait``.)
+
+Q: I have a bridge br0.  I added a new port vif1.0, and it shows up in
+"ovs-vsctl show", but "ovs-vsctl list port" says that it has OpenFlow port
+("ofport") -1, and "ovs-ofctl show br0" doesn't show vif1.0 at all.
+
+    A: Open vSwitch wasn't able to create the port.  Check the ovs-vswitchd log
+    for details (Debian and Red Hat packaging for Open vSwitch put it in
+    /var/log/openvswitch/ovs-vswitchd.log).  Please see the previous question
+    for more information.
+
+    You may want to upgrade to Open vSwitch 2.3 (or later), in which ovs-vsctl
+    will immediately report when there is an issue creating a port.
+
+Q: I created a tap device tap0, configured an IP address on it, and added it to
+a bridge, like this:::
+
+    $ tunctl -t tap0
+    $ ifconfig tap0 192.168.0.123
+    $ ovs-vsctl add-br br0
+    $ ovs-vsctl add-port br0 tap0
+
+I expected that I could then use this IP address to contact other hosts on the
+network, but it doesn't work.  Why not?
+
+    A: The short answer is that this is a misuse of a "tap" device.  Use an
+    "internal" device implemented by Open vSwitch, which works differently and
+    is designed for this use.  To solve this problem with an internal device,
+    instead run:::
+
+        $ ovs-vsctl add-br br0
+        $ ovs-vsctl add-port br0 int0 -- set Interface int0 type=internal
+        $ ifconfig int0 192.168.0.123
+
+    Even more simply, you can take advantage of the internal port that every
+    bridge has under the name of the bridge:::
+
+        $ ovs-vsctl add-br br0
+        $ ifconfig br0 192.168.0.123
+
+    In more detail, a "tap" device is an interface between the Linux (or BSD)
+    network stack and a user program that opens it as a socket.  When the "tap"
+    device transmits a packet, it appears in the socket opened by the userspace
+    program.  Conversely, when the userspace program writes to the "tap"
+    socket, the kernel TCP/IP stack processes the packet as if it had been
+    received by the "tap" device.
+
+    Consider the configuration above.  Given this configuration, if you "ping"
+    an IP address in the 192.168.0.x subnet, the Linux kernel routing stack
+    will transmit an ARP on the tap0 device.  Open vSwitch userspace treats
+    "tap" devices just like any other network device; that is, it doesn't open
+    them as "tap" sockets.  That means that the ARP packet will simply get
+    dropped.
+
+    You might wonder why the Open vSwitch kernel module doesn't intercept the
+    ARP packet and bridge it.  After all, Open vSwitch intercepts packets on
+    other devices.  The answer is that Open vSwitch only intercepts *received*
+    packets, but this is a packet being transmitted.  The same thing happens
+    for all other types of network devices, except for Open vSwitch "internal"
+    ports.  If you, for example, add a physical Ethernet port to an OVS bridge,
+    configure an IP address on a physical Ethernet port, and then issue a
+    "ping" to an address in that subnet, the same thing happens: an ARP gets
+    transmitted on the physical Ethernet port and Open vSwitch never sees it.
+    (You should not do that, as documented at the beginning of this section.)
+
+    It can make sense to add a "tap" device to an Open vSwitch bridge, if some
+    userspace program (other than Open vSwitch) has opened the tap socket.
+    This is the case, for example, if the "tap" device was created by KVM (or
+    QEMU) to simulate a virtual NIC.  In such a case, when OVS bridges a packet
+    to the "tap" device, the kernel forwards that packet to KVM in userspace,
+    which passes it along to the VM, and in the other direction, when the VM
+    sends a packet, KVM writes it to the "tap" socket, which causes OVS to
+    receive it and bridge it to the other OVS ports.  Please note that in such
+    a case no IP address is configured on the "tap" device (there is normally
+    an IP address configured in the virtual NIC inside the VM, but this is not
+    visible to the host Linux kernel or to Open vSwitch).
+
+    There is one special case in which Open vSwitch does directly read and
+    write "tap" sockets.  This is an implementation detail of the Open vSwitch
+    userspace switch, which implements its "internal" ports as Linux (or BSD)
+    "tap" sockets.  In such a userspace switch, OVS receives packets sent on
+    the "tap" device used to implement an "internal" port by reading the
+    associated "tap" socket, and bridges them to the rest of the switch.  In
+    the other direction, OVS transmits packets bridged to the "internal" port
+    by writing them to the "tap" socket, causing them to be processed by the
+    kernel TCP/IP stack as if they had been received on the "tap" device.
+    Users should not need to be concerned with this implementation detail.
+
+    Open vSwitch has a network device type called "tap".  This is intended only
+    for implementing "internal" ports in the OVS userspace switch and should
+    not be used otherwise.  In particular, users should not configure KVM "tap"
+    devices as type "tap" (use type "system", the default, instead).
+
+Q: I observe packet loss at the beginning of RFC2544 tests on a server running
+few hundred container apps bridged to OVS with traffic generated by HW traffic
+generator.  How can I fix this?
+
+    A: This is expected behavior on virtual switches.  RFC2544 tests were
+    designed for hardware switches, which don't have caches on the fastpath
+    that need to be heated.  Traffic generators in order to prime the switch
+    use learning phase to heat the caches before sending the actual traffic in
+    test phase.  In case of OVS the cache is flushed quickly and to accommodate
+    the traffic generator's delay between learning and test phase, the max-idle
+    timeout settings should be changed to 50000 ms.::
+
+        $ ovs-vsctl --no-wait set Open_vSwitch . other_config:max-idle=50000
+
+Q: How can I configure the bridge internal interface MTU? Why does Open vSwitch
+keep changing internal ports MTU?
+
+    A: By default Open vSwitch overrides the internal interfaces (e.g. br0)
+    MTU.  If you have just an internal interface (e.g. br0) and a physical
+    interface (e.g. eth0), then every change in MTU to eth0 will be reflected
+    to br0.  Any manual MTU configuration using `ip` or `ifconfig` on internal
+    interfaces is going to be overridden by Open vSwitch to match the current
+    bridge minimum.
+
+    Sometimes this behavior is not desirable, for example with tunnels.  The
+    MTU of an internal interface can be explicitly set using the following
+    command:::
+
+        $ ovs-vsctl set int br0 mtu_request=1450
+
+    After this, Open vSwitch will configure br0 MTU to 1450.  Since this
+    setting is in the database it will be persistent (compared to what happens
+    with `ip` or `ifconfig`).
+
+    The MTU configuration can be removed to restore the default behavior
+    with:::
+
+        $ ovs-vsctl set int br0 mtu_request=[]
+
+    The mtu_request column can be used to configure MTU even for physical
+    interfaces (e.g. eth0).
+
+QOS
+---
+
+Q: Does OVS support Quality of Service (QoS)?
+
+    A: Yes.  For traffic that egresses from a switch, OVS supports traffic
+    shaping; for traffic that ingresses into a switch, OVS support policing.
+    Policing is a simple form of quality-of-service that simply drops packets
+    received in excess of the configured rate.  Due to its simplicity, policing
+    is usually less accurate and less effective than egress traffic shaping,
+    which queues packets.
+
+    Keep in mind that ingress and egress are from the perspective of the
+    switch.  That means that egress shaping limits the rate at which traffic is
+    allowed to transmit from a physical interface, but not the rate at which
+    traffic will be received on a virtual machine's VIF.  For ingress policing,
+    the behavior is the opposite.
+
+Q: How do I configure egress traffic shaping?
+
+    A: Suppose that you want to set up bridge br0 connected to physical
+    Ethernet port eth0 (a 1 Gbps device) and virtual machine interfaces vif1.0
+    and vif2.0, and that you want to limit traffic from vif1.0 to eth0 to 10
+    Mbps and from vif2.0 to eth0 to 20 Mbps.  Then, you could configure the
+    bridge this way:::
+
+        $ ovs-vsctl -- \
+          add-br br0 -- \
+          add-port br0 eth0 -- \
+          add-port br0 vif1.0 -- set interface vif1.0 ofport_request=5 -- \
+          add-port br0 vif2.0 -- set interface vif2.0 ofport_request=6 -- \
+          set port eth0 qos=@newqos -- \
+          --id=@newqos create qos type=linux-htb \
+              other-config:max-rate=1000000000 \
+              queues:123=@vif10queue \
+              queues:234=@vif20queue -- \
+          --id=@vif10queue create queue other-config:max-rate=10000000 -- \
+          --id=@vif20queue create queue other-config:max-rate=20000000
+
+    At this point, bridge br0 is configured with the ports and eth0 is
+    configured with the queues that you need for QoS, but nothing is actually
+    directing packets from vif1.0 or vif2.0 to the queues that we have set up
+    for them.  That means that all of the packets to eth0 are going to the
+    "default queue", which is not what we want.
+
+    We use OpenFlow to direct packets from vif1.0 and vif2.0 to the queues
+    reserved for them:::
+
+        $ ovs-ofctl add-flow br0 in_port=5,actions=set_queue:123,normal
+        $ ovs-ofctl add-flow br0 in_port=6,actions=set_queue:234,normal
+
+    Each of the above flows matches on the input port, sets up the appropriate
+    queue (123 for vif1.0, 234 for vif2.0), and then executes the "normal"
+    action, which performs the same switching that Open vSwitch would have done
+    without any OpenFlow flows being present.  (We know that vif1.0 and vif2.0
+    have OpenFlow port numbers 5 and 6, respectively, because we set their
+    ofport_request columns above.  If we had not done that, then we would have
+    needed to find out their port numbers before setting up these flows.)
+
+    Now traffic going from vif1.0 or vif2.0 to eth0 should be rate-limited.
+
+    By the way, if you delete the bridge created by the above commands, with:::
+
+        $ ovs-vsctl del-br br0
+
+    then that will leave one unreferenced QoS record and two unreferenced Queue
+    records in the Open vSwich database.  One way to clear them out, assuming
+    you don't have other QoS or Queue records that you want to keep, is:::
+
+        $ ovs-vsctl -- --all destroy QoS -- --all destroy Queue
+
+    If you do want to keep some QoS or Queue records, or the Open vSwitch you
+    are using is older than version 1.8 (which added the ``--all`` option),
+    then you will have to destroy QoS and Queue records individually.
+
+Q: How do I configure ingress policing?
+
+    A: A policing policy can be configured on an interface to drop packets that
+    arrive at a higher rate than the configured value.  For example, the
+    following commands will rate-limit traffic that vif1.0 may generate to
+    10Mbps:
+
+        $ ovs-vsctl set interface vif1.0 ingress_policing_rate=10000
+        $ ovs-vsctl set interface vif1.0 ingress_policing_burst=8000
+
+    Traffic policing can interact poorly with some network protocols and can
+    have surprising results.  The "Ingress Policing" section of
+    ovs-vswitchd.conf.db(5) discusses the issues in greater detail.
+
+Q: I configured Quality of Service (QoS) in my OpenFlow network by adding
+records to the QoS and Queue table, but the results aren't what I expect.
+
+    A: Did you install OpenFlow flows that use your queues?  This is the
+    primary way to tell Open vSwitch which queues you want to use.  If you
+    don't do this, then the default queue will be used, which will probably not
+    have the effect you want.
+
+    Refer to the previous question for an example.
+
+Q: I'd like to take advantage of some QoS feature that Open vSwitch doesn't yet
+support.  How do I do that?
+
+    A: Open vSwitch does not implement QoS itself.  Instead, it can configure
+    some, but not all, of the QoS features built into the Linux kernel.  If you
+    need some QoS feature that OVS cannot configure itself, then the first step
+    is to figure out whether Linux QoS supports that feature.  If it does, then
+    you can submit a patch to support Open vSwitch configuration for that
+    feature, or you can use "tc" directly to configure the feature in Linux.
+    (If Linux QoS doesn't support the feature you want, then first you have to
+    add that support to Linux.)
+
+Q: I configured QoS, correctly, but my measurements show that it isn't working
+as well as I expect.
+
+    A: With the Linux kernel, the Open vSwitch implementation of QoS has two
+    aspects:
+
+    - Open vSwitch configures a subset of Linux kernel QoS features, according
+      to what is in OVSDB.  It is possible that this code has bugs.  If you
+      believe that this is so, then you can configure the Linux traffic control
+      (QoS) stack directly with the "tc" program.  If you get better results
+      that way, you can send a detailed bug report to bugs at openvswitch.org.
+
+      It is certain that Open vSwitch cannot configure every Linux kernel QoS
+      feature.  If you need some feature that OVS cannot configure, then you
+      can also use "tc" directly (or add that feature to OVS).
+
+    - The Open vSwitch implementation of OpenFlow allows flows to be directed
+      to particular queues.  This is pretty simple and unlikely to have serious
+      bugs at this point.
+
+    However, most problems with QoS on Linux are not bugs in Open vSwitch at
+    all.  They tend to be either configuration errors (please see the earlier
+    questions in this section) or issues with the traffic control (QoS) stack
+    in Linux.  The Open vSwitch developers are not experts on Linux traffic
+    control.  We suggest that, if you believe you are encountering a problem
+    with Linux traffic control, that you consult the tc manpages (e.g. tc(8),
+    tc-htb(8), tc-hfsc(8)), web resources (e.g. http://lartc.org/), or mailing
+    lists (e.g. http://vger.kernel.org/vger-lists.html#netdev).
+
+Q: Does Open vSwitch support OpenFlow meters?
+
+    A: Since version 2.0, Open vSwitch has OpenFlow protocol support for
+    OpenFlow meters.  There is no implementation of meters in the Open vSwitch
+    software switch (neither the kernel-based nor userspace switches).
+
+VLANs
+-----
+
+Q: What's a VLAN?
+
+    A: At the simplest level, a VLAN (short for "virtual LAN") is a way to
+    partition a single switch into multiple switches.  Suppose, for example,
+    that you have two groups of machines, group A and group B.  You want the
+    machines in group A to be able to talk to each other, and you want the
+    machine in group B to be able to talk to each other, but you don't want the
+    machines in group A to be able to talk to the machines in group B.  You can
+    do this with two switches, by plugging the machines in group A into one
+    switch and the machines in group B into the other switch.
+
+    If you only have one switch, then you can use VLANs to do the same thing,
+    by configuring the ports for machines in group A as VLAN "access ports" for
+    one VLAN and the ports for group B as "access ports" for a different VLAN.
+    The switch will only forward packets between ports that are assigned to the
+    same VLAN, so this effectively subdivides your single switch into two
+    independent switches, one for each group of machines.
+
+    So far we haven't said anything about VLAN headers.  With access ports,
+    like we've described so far, no VLAN header is present in the Ethernet
+    frame.  This means that the machines (or switches) connected to access
+    ports need not be aware that VLANs are involved, just like in the case
+    where we use two different physical switches.
+
+    Now suppose that you have a whole bunch of switches in your network,
+    instead of just one, and that some machines in group A are connected
+    directly to both switches 1 and 2.  To allow these machines to talk to each
+    other, you could add an access port for group A's VLAN to switch 1 and
+    another to switch 2, and then connect an Ethernet cable between those
+    ports.  That works fine, but it doesn't scale well as the number of
+    switches and the number of VLANs increases, because you use up a lot of
+    valuable switch ports just connecting together your VLANs.
+
+    This is where VLAN headers come in.  Instead of using one cable and two
+    ports per VLAN to connect a pair of switches, we configure a port on each
+    switch as a VLAN "trunk port".  Packets sent and received on a trunk port
+    carry a VLAN header that says what VLAN the packet belongs to, so that only
+    two ports total are required to connect the switches, regardless of the
+    number of VLANs in use.  Normally, only switches (either physical or
+    virtual) are connected to a trunk port, not individual hosts, because
+    individual hosts don't expect to see a VLAN header in the traffic that they
+    receive.
+
+    None of the above discussion says anything about particular VLAN numbers.
+    This is because VLAN numbers are completely arbitrary.  One must only
+    ensure that a given VLAN is numbered consistently throughout a network and
+    that different VLANs are given different numbers.  (That said, VLAN 0 is
+    usually synonymous with a packet that has no VLAN header, and VLAN 4095 is
+    reserved.)
+
+Q: VLANs don't work.
+
+    A: Many drivers in Linux kernels before version 3.3 had VLAN-related bugs.
+    If you are having problems with VLANs that you suspect to be driver
+    related, then you have several options:
+
+    - Upgrade to Linux 3.3 or later.
+
+    - Build and install a fixed version of the particular driver that is
+      causing trouble, if one is available.
+
+    - Use a NIC whose driver does not have VLAN problems.
+
+    - Use "VLAN splinters", a feature in Open vSwitch 1.4 upto 2.5 that works
+      around bugs in kernel drivers.  To enable VLAN splinters on interface
+      eth0, use the command:::
+
+          $ ovs-vsctl set interface eth0 other-config:enable-vlan-splinters=true
+
+      For VLAN splinters to be effective, Open vSwitch must know which VLANs
+      are in use.  See the "VLAN splinters" section in the Interface table in
+      ovs-vswitchd.conf.db(5) for details on how Open vSwitch infers in-use
+      VLANs.
+
+      VLAN splinters increase memory use and reduce performance, so use them
+      only if needed.
+
+    - Apply the "vlan workaround" patch from the XenServer kernel patch queue,
+      build Open vSwitch against this patched kernel, and then use
+      ovs-vlan-bug-workaround(8) to enable the VLAN workaround for each
+      interface whose driver is buggy.
+
+      (This is a nontrivial exercise, so this option is included only for
+      completeness.)
+
+    It is not always easy to tell whether a Linux kernel driver has buggy VLAN
+    support.  The ovs-vlan-test(8) and ovs-test(8) utilities can help you test.
+    See their manpages for details.  Of the two utilities, ovs-test(8) is newer
+    and more thorough, but ovs-vlan-test(8) may be easier to use.
+
+Q: VLANs still don't work.  I've tested the driver so I know that it's OK.
+
+    A: Do you have VLANs enabled on the physical switch that OVS is attached
+    to?  Make sure that the port is configured to trunk the VLAN or VLANs that
+    you are using with OVS.
+
+Q: Outgoing VLAN-tagged traffic goes through OVS to my physical switch
+and to its destination host, but OVS seems to drop incoming return
+traffic.
+
+    A: It's possible that you have the VLAN configured on your physical switch
+    as the "native" VLAN.  In this mode, the switch treats incoming packets
+    either tagged with the native VLAN or untagged as part of the native VLAN.
+    It may also send outgoing packets in the native VLAN without a VLAN tag.
+
+    If this is the case, you have two choices:
+
+    - Change the physical switch port configuration to tag packets it forwards
+      to OVS with the native VLAN instead of forwarding them untagged.
+
+    - Change the OVS configuration for the physical port to a native VLAN mode.
+      For example, the following sets up a bridge with port eth0 in
+      "native-tagged" mode in VLAN 9:::
+
+          $ ovs-vsctl add-br br0 $ ovs-vsctl add-port br0 eth0 tag=9
+          vlan_mode=native-tagged
+
+      In this situation, "native-untagged" mode will probably work equally
+      well.  Refer to the documentation for the Port table in
+      ovs-vswitchd.conf.db(5) for more information.
+
+Q: I added a pair of VMs on different VLANs, like this:::
+
+    $ ovs-vsctl add-br br0
+    $ ovs-vsctl add-port br0 eth0
+    $ ovs-vsctl add-port br0 tap0 tag=9
+    $ ovs-vsctl add-port br0 tap1 tag=10
+
+but the VMs can't access each other, the external network, or the Internet.
+
+    A: It is to be expected that the VMs can't access each other.  VLANs are a
+    means to partition a network.  When you configured tap0 and tap1 as access
+    ports for different VLANs, you indicated that they should be isolated from
+    each other.
+
+    As for the external network and the Internet, it seems likely that the
+    machines you are trying to access are not on VLAN 9 (or 10) and that the
+    Internet is not available on VLAN 9 (or 10).
+
+Q: I added a pair of VMs on the same VLAN, like this:::
+
+    $ ovs-vsctl add-br br0
+    $ ovs-vsctl add-port br0 eth0
+    $ ovs-vsctl add-port br0 tap0 tag=9
+    $ ovs-vsctl add-port br0 tap1 tag=9
+
+The VMs can access each other, but not the external network or the Internet.
+
+    A: It seems likely that the machines you are trying to access in the
+    external network are not on VLAN 9 and that the Internet is not available
+    on VLAN 9.  Also, ensure VLAN 9 is set up as an allowed trunk VLAN on the
+    upstream switch port to which eth0 is connected.
+
+Q: Can I configure an IP address on a VLAN?
+
+    A: Yes.  Use an "internal port" configured as an access port.  For example,
+    the following configures IP address 192.168.0.7 on VLAN 9.  That is, OVS
+    will forward packets from eth0 to 192.168.0.7 only if they have an 802.1Q
+    header with VLAN 9.  Conversely, traffic forwarded from 192.168.0.7 to eth0
+    will be tagged with an 802.1Q header with VLAN 9:::
+
+        $ ovs-vsctl add-br br0
+        $ ovs-vsctl add-port br0 eth0
+        $ ovs-vsctl add-port br0 vlan9 tag=9 \
+            -- set interface vlan9 type=internal
+        $ ifconfig vlan9 192.168.0.7
+
+    See also the following question.
+
+Q: I configured one IP address on VLAN 0 and another on VLAN 9, like this:::
+
+    $ ovs-vsctl add-br br0
+    $ ovs-vsctl add-port br0 eth0
+    $ ifconfig br0 192.168.0.5
+    $ ovs-vsctl add-port br0 vlan9 tag=9 -- set interface vlan9 type=internal
+    $ ifconfig vlan9 192.168.0.9
+
+but other hosts that are only on VLAN 0 can reach the IP address configured on
+VLAN 9.  What's going on?
+
+    A: `RFC 1122 section 3.3.4.2 "Multihoming Requirements"
+    <https://tools.ietf.org/html/rfc1122#section-3.3.4.2>`__ describes two
+    approaches to IP address handling in Internet hosts:
+
+    - In the "Strong ES Model", where an ES is a host ("End System"), an IP
+      address is primarily associated with a particular interface.  The host
+      discards packets that arrive on interface A if they are destined for an
+      IP address that is configured on interface B.  The host never sends
+      packets from interface A using a source address configured on interface
+      B.
+
+    - In the "Weak ES Model", an IP address is primarily associated with a
+      host.  The host accepts packets that arrive on any interface if they are
+      destined for any of the host's IP addresses, even if the address is
+      configured on some interface other than the one on which it arrived.  The
+      host does not restrict itself to sending packets from an IP address
+      associated with the originating interface.
+
+    Linux uses the weak ES model.  That means that when packets destined to the
+    VLAN 9 IP address arrive on eth0 and are bridged to br0, the kernel IP
+    stack accepts them there for the VLAN 9 IP address, even though they were
+    not received on vlan9, the network device for vlan9.
+
+    To simulate the strong ES model on Linux, one may add iptables rule to
+    filter packets based on source and destination address and adjust ARP
+    configuration with sysctls.
+
+    BSD uses the strong ES model.
+
+Q: My OpenFlow controller doesn't see the VLANs that I expect.
+
+    A: The configuration for VLANs in the Open vSwitch database (e.g. via
+    ovs-vsctl) only affects traffic that goes through Open vSwitch's
+    implementation of the OpenFlow "normal switching" action.  By default, when
+    Open vSwitch isn't connected to a controller and nothing has been manually
+    configured in the flow table, all traffic goes through the "normal
+    switching" action.  But, if you set up OpenFlow flows on your own, through
+    a controller or using ovs-ofctl or through other means, then you have to
+    implement VLAN handling yourself.
+
+    You can use "normal switching" as a component of your OpenFlow actions,
+    e.g. by putting "normal" into the lists of actions on ovs-ofctl or by
+    outputting to OFPP_NORMAL from an OpenFlow controller.  In situations where
+    this is not suitable, you can implement VLAN handling yourself, e.g.:
+
+    - If a packet comes in on an access port, and the flow table needs to send
+      it out on a trunk port, then the flow can add the appropriate VLAN tag
+      with the "mod_vlan_vid" action.
+
+    - If a packet comes in on a trunk port, and the flow table needs to send it
+      out on an access port, then the flow can strip the VLAN tag with the
+      "strip_vlan" action.
+
+Q: I configured ports on a bridge as access ports with different VLAN tags,
+like this:::
+
+    $ ovs-vsctl add-br br0
+    $ ovs-vsctl set-controller br0 tcp:192.168.0.10:6653
+    $ ovs-vsctl add-port br0 eth0
+    $ ovs-vsctl add-port br0 tap0 tag=9
+    $ ovs-vsctl add-port br0 tap1 tag=10
+
+but the VMs running behind tap0 and tap1 can still communicate, that is, they
+are not isolated from each other even though they are on different VLANs.
+
+    A: Do you have a controller configured on br0 (as the commands above do)?
+    If so, then this is a variant on the previous question, "My OpenFlow
+    controller doesn't see the VLANs that I expect," and you can refer to the
+    answer there for more information.
+
+Q: How MAC learning works with VLANs?
+
+    A: Open vSwitch implements Independent VLAN Learning (IVL) for
+    ``OFPP_NORMAL`` action, e.g. it logically has separate learning tables for
+    each VLANs.
+
+VXLANs
+------
+
+Q: What's a VXLAN?
+
+    A: VXLAN stands for Virtual eXtensible Local Area Network, and is a means
+    to solve the scaling challenges of VLAN networks in a multi-tenant
+    environment. VXLAN is an overlay network which transports an L2 network
+    over an existing L3 network. For more information on VXLAN, please see `RFC
+    7348 <http://tools.ietf.org/html/rfc7348>`__.
+
+Q: How much of the VXLAN protocol does Open vSwitch currently support?
+
+    A: Open vSwitch currently supports the framing format for packets on the
+    wire. There is currently no support for the multicast aspects of VXLAN.  To
+    get around the lack of multicast support, it is possible to pre-provision
+    MAC to IP address mappings either manually or from a controller.
+
+Q: What destination UDP port does the VXLAN implementation in Open vSwitch
+use?
+
+    A: By default, Open vSwitch will use the assigned IANA port for VXLAN,
+    which is 4789. However, it is possible to configure the destination UDP
+    port manually on a per-VXLAN tunnel basis. An example of this configuration
+    is provided below.::
+
+        $ ovs-vsctl add-br br0
+        $ ovs-vsctl add-port br0 vxlan1 -- set interface vxlan1 type=vxlan \
+            options:remote_ip=192.168.1.2 options:key=flow options:dst_port=8472
+
+Using OpenFlow
+--------------
+
+Q: What versions of OpenFlow does Open vSwitch support?
+
+    A: The following table lists the versions of OpenFlow supported by each
+    version of Open vSwitch:
+
+    =============== ===== ===== ===== ===== ===== ===== =====
+    Open vSwitch    OF1.0 OF1.1 OF1.2 OF1.3 OF1.4 OF1.5 OF1.6
+    =============== ===== ===== ===== ===== ===== ===== =====
+    1.9 and earlier  yes   ---   ---   ---   ---   ---   ---
+    1.10             yes   ---   (*)   (*)   ---   ---   ---
+    1.11             yes   ---   (*)   (*)   ---   ---   ---
+    2.0              yes   (*)   (*)   (*)   ---   ---   ---
+    2.1              yes   (*)   (*)   (*)   ---   ---   ---
+    2.2              yes   (*)   (*)   (*)   (%)   (*)   ---
+    2.3              yes   yes   yes   yes   (*)   (*)   ---
+    2.4              yes   yes   yes   yes   (*)   (*)   ---
+    2.5              yes   yes   yes   yes   (*)   (*)   (*)
+    =============== ===== ===== ===== ===== ===== ===== =====
+
+    (*) Supported, with one or more missing features.
+    (%) Experimental, unsafe implementation.
+
+    Open vSwitch 2.3 enables OpenFlow 1.0, 1.1, 1.2, and 1.3 by default in
+    ovs-vswitchd.  In Open vSwitch 1.10 through 2.2, OpenFlow 1.1, 1.2, and 1.3
+    must be enabled manually in ovs-vswitchd.
+
+    Some versions of OpenFlow are supported with missing features and therefore
+    not enabled by default: OpenFlow 1.4 and 1.5, in Open vSwitch 2.3 and
+    later, as well as OpenFlow 1.6 in Open vSwitch 2.5 and later.  Also, the
+    OpenFlow 1.6 specification is still under development and thus subject to
+    change.
+
+    In any case, the user may override the default:
+
+    - To enable OpenFlow 1.0, 1.1, 1.2, and 1.3 on bridge br0:::
+
+          $ ovs-vsctl set bridge br0 \
+              protocols=OpenFlow10,OpenFlow11,OpenFlow12,OpenFlow13
+
+    - To enable OpenFlow 1.0, 1.1, 1.2, 1.3, 1.4, and 1.5 on bridge br0:::
+
+          $ ovs-vsctl set bridge br0 \
+              protocols=OpenFlow10,OpenFlow11,OpenFlow12,OpenFlow13,OpenFlow14,OpenFlow15
+
+    - To enable only OpenFlow 1.0 on bridge br0:::
+
+          $ ovs-vsctl set bridge br0 protocols=OpenFlow10
+
+    All current versions of ovs-ofctl enable only OpenFlow 1.0 by default.  Use
+    the -O option to enable support for later versions of OpenFlow in
+    ovs-ofctl.  For example:::
+
+        $ ovs-ofctl -O OpenFlow13 dump-flows br0
+
+    (Open vSwitch 2.2 had an experimental implementation of OpenFlow 1.4 that
+    could cause crashes.  We don't recommend enabling it.)
+
+    The `OpenFlow guide <OPENFLOW.rst>`__ tracks support for OpenFlow 1.1 and
+    later features.  When support for OpenFlow 1.4 and 1.5 is solidly
+    implemented, Open vSwitch will enable those version by default.
+
+Q: Does Open vSwitch support MPLS?
+
+    A: Before version 1.11, Open vSwitch did not support MPLS.  That is, these
+    versions can match on MPLS Ethernet types, but they cannot match, push, or
+    pop MPLS labels, nor can they look past MPLS labels into the encapsulated
+    packet.
+
+    Open vSwitch versions 1.11, 2.0, and 2.1 have very minimal support for
+    MPLS.  With the userspace datapath only, these versions can match, push, or
+    pop a single MPLS label, but they still cannot look past MPLS labels (even
+    after popping them) into the encapsulated packet.  Kernel datapath support
+    is unchanged from earlier versions.
+
+    Open vSwitch version 2.3 can match, push, or pop a single MPLS label and
+    look past the MPLS label into the encapsulated packet.  Both userspace and
+    kernel datapaths will be supported, but MPLS processing always happens in
+    userspace either way, so kernel datapath performance will be disappointing.
+
+    Open vSwitch version 2.4 can match, push, or pop up to 3 MPLS labels and
+    look past the MPLS label into the encapsulated packet.  It will have kernel
+    support for MPLS, yielding improved performance.
+
+Q: I'm getting "error type 45250 code 0".  What's that?
+
+    A: This is a Open vSwitch extension to OpenFlow error codes.  Open vSwitch
+    uses this extension when it must report an error to an OpenFlow controller
+    but no standard OpenFlow error code is suitable.
+
+    Open vSwitch logs the errors that it sends to controllers, so the easiest
+    thing to do is probably to look at the ovs-vswitchd log to find out what
+    the error was.
+
+    If you want to dissect the extended error message yourself, the format is
+    documented in include/openflow/nicira-ext.h in the Open vSwitch source
+    distribution.  The extended error codes are documented in
+    include/openvswitch/ofp-errors.h.
+
+Q: Some of the traffic that I'd expect my OpenFlow controller to see doesn't
+actually appear through the OpenFlow connection, even though I know that it's
+going through.
+
+    A: By default, Open vSwitch assumes that OpenFlow controllers are connected
+    "in-band", that is, that the controllers are actually part of the network
+    that is being controlled.  In in-band mode, Open vSwitch sets up special
+    "hidden" flows to make sure that traffic can make it back and forth between
+    OVS and the controllers.  These hidden flows are higher priority than any
+    flows that can be set up through OpenFlow, and they are not visible through
+    normal OpenFlow flow table dumps.
+
+    Usually, the hidden flows are desirable and helpful, but occasionally they
+    can cause unexpected behavior.  You can view the full OpenFlow flow table,
+    including hidden flows, on bridge br0 with the command:::
+
+        $ ovs-appctl bridge/dump-flows br0
+
+    to help you debug.  The hidden flows are those with priorities
+    greater than 65535 (the maximum priority that can be set with
+    OpenFlow).
+
+    The DESIGN file at the top level of the Open vSwitch source
+    distribution describes the in-band model in detail.
+
+    If your controllers are not actually in-band (e.g. they are on
+    localhost via 127.0.0.1, or on a separate network), then you should
+    configure your controllers in "out-of-band" mode.  If you have one
+    controller on bridge br0, then you can configure out-of-band mode
+    on it with:::
+
+        $ ovs-vsctl set controller br0 connection-mode=out-of-band
+
+Q: Some of the OpenFlow flows that my controller sets up don't seem to apply to
+certain traffic, especially traffic between OVS and the controller itself.
+
+    A: See above.
+
+Q: I configured all my controllers for out-of-band control mode but "ovs-appctl
+bridge/dump-flows" still shows some hidden flows.
+
+    A: You probably have a remote manager configured (e.g. with "ovs-vsctl
+    set-manager").  By default, Open vSwitch assumes that managers need in-band
+    rules set up on every bridge.  You can disable these rules on bridge br0
+    with:::
+
+        $ ovs-vsctl set bridge br0 other-config:disable-in-band=true
+
+    This actually disables in-band control entirely for the bridge, as if all
+    the bridge's controllers were configured for out-of-band control.
+
+Q: My OpenFlow controller doesn't see the VLANs that I expect.
+
+    A: See answer under "VLANs", above.
+
+Q: I ran ``ovs-ofctl add-flow br0 nw_dst=192.168.0.1,actions=drop`` but I got a
+funny message like this:::
+
+    ofp_util|INFO|normalization changed ofp_match, details:
+    ofp_util|INFO| pre: nw_dst=192.168.0.1
+    ofp_util|INFO|post:
+
+and when I ran ``ovs-ofctl dump-flows br0`` I saw that my nw_dst match had
+disappeared, so that the flow ends up matching every packet.
+
+    A: The term "normalization" in the log message means that a flow cannot
+    match on an L3 field without saying what L3 protocol is in use.  The
+    "ovs-ofctl" command above didn't specify an L3 protocol, so the L3 field
+    match was dropped.
+
+    In this case, the L3 protocol could be IP or ARP.  A correct command for
+    each possibility is, respectively:::
+
+        $ ovs-ofctl add-flow br0 ip,nw_dst=192.168.0.1,actions=drop
+
+    and:::
+
+        $ ovs-ofctl add-flow br0 arp,nw_dst=192.168.0.1,actions=drop
+
+    Similarly, a flow cannot match on an L4 field without saying what L4
+    protocol is in use.  For example, the flow match ``tp_src=1234`` is, by
+    itself, meaningless and will be ignored.  Instead, to match TCP source port
+    1234, write ``tcp,tp_src=1234``, or to match UDP source port 1234, write
+    ``udp,tp_src=1234``.
+
+Q: How can I figure out the OpenFlow port number for a given port?
+
+    A: The ``OFPT_FEATURES_REQUEST`` message requests an OpenFlow switch to
+    respond with an ``OFPT_FEATURES_REPLY`` that, among other information,
+    includes a mapping between OpenFlow port names and numbers.  From a command
+    prompt, ``ovs-ofctl show br0`` makes such a request and prints the response
+    for switch br0.
+
+    The Interface table in the Open vSwitch database also maps OpenFlow port
+    names to numbers.  To print the OpenFlow port number associated with
+    interface eth0, run:::
+
+        $ ovs-vsctl get Interface eth0 ofport
+
+    You can print the entire mapping with:::
+
+        $ ovs-vsctl -- --columns=name,ofport list Interface
+
+    but the output mixes together interfaces from all bridges in the database,
+    so it may be confusing if more than one bridge exists.
+
+    In the Open vSwitch database, ofport value ``-1`` means that the interface
+    could not be created due to an error.  (The Open vSwitch log should
+    indicate the reason.)  ofport value ``[]`` (the empty set) means that the
+    interface hasn't been created yet.  The latter is normally an intermittent
+    condition (unless ovs-vswitchd is not running).
+
+Q: I added some flows with my controller or with ovs-ofctl, but when I run
+"ovs-dpctl dump-flows" I don't see them.
+
+    A: ovs-dpctl queries a kernel datapath, not an OpenFlow switch.  It won't
+    display the information that you want.  You want to use ``ovs-ofctl
+    dump-flows`` instead.
+
+Q: It looks like each of the interfaces in my bonded port shows up as an
+individual OpenFlow port.  Is that right?
+
+    A: Yes, Open vSwitch makes individual bond interfaces visible as OpenFlow
+    ports, rather than the bond as a whole.  The interfaces are treated
+    together as a bond for only a few purposes:
+
+    - Sending a packet to the OFPP_NORMAL port.  (When an OpenFlow controller
+      is not configured, this happens implicitly to every packet.)
+
+    - Mirrors configured for output to a bonded port.
+
+    It would make a lot of sense for Open vSwitch to present a bond as a single
+    OpenFlow port.  If you want to contribute an implementation of such a
+    feature, please bring it up on the Open vSwitch development mailing list at
+    dev at openvswitch.org.
+
+Q: I have a sophisticated network setup involving Open vSwitch, VMs or multiple
+hosts, and other components.  The behavior isn't what I expect.  Help!
+
+    A: To debug network behavior problems, trace the path of a packet,
+    hop-by-hop, from its origin in one host to a remote host.  If that's
+    correct, then trace the path of the response packet back to the origin.
+
+    The open source tool called ``plotnetcfg`` can help to understand the
+    relationship between the networking devices on a single host.
+
+    Usually a simple ICMP echo request and reply (``ping``) packet is good
+    enough.  Start by initiating an ongoing ``ping`` from the origin host to a
+    remote host.  If you are tracking down a connectivity problem, the "ping"
+    will not display any successful output, but packets are still being sent.
+    (In this case the packets being sent are likely ARP rather than ICMP.)
+
+    Tools available for tracing include the following:
+
+    - ``tcpdump`` and ``wireshark`` for observing hops across network devices,
+      such as Open vSwitch internal devices and physical wires.
+
+    - ``ovs-appctl dpif/dump-flows <br>`` in Open vSwitch 1.10 and later or
+      ``ovs-dpctl dump-flows <br>`` in earlier versions.  These tools allow one
+      to observe the actions being taken on packets in ongoing flows.
+
+      See ovs-vswitchd(8) for ``ovs-appctl dpif/dump-flows`` documentation,
+      ovs-dpctl(8) for ``ovs-dpctl dump-flows`` documentation, and "Why are
+      there so many different ways to dump flows?" above for some background.
+
+    - ``ovs-appctl ofproto/trace`` to observe the logic behind how ovs-vswitchd
+      treats packets.  See ovs-vswitchd(8) for documentation.  You can out more
+      details about a given flow that ``ovs-dpctl dump-flows`` displays, by
+      cutting and pasting a flow from the output into an ``ovs-appctl
+      ofproto/trace`` command.
+
+    - SPAN, RSPAN, and ERSPAN features of physical switches, to observe what
+      goes on at these physical hops.
+
+    Starting at the origin of a given packet, observe the packet at each hop in
+    turn.  For example, in one plausible scenario, you might:
+
+    1. ``tcpdump`` the ``eth`` interface through which an ARP egresses a VM,
+       from inside the VM.
+
+    2. ``tcpdump`` the ``vif`` or ``tap`` interface through which the ARP
+       ingresses the host machine.
+
+    3. Use ``ovs-dpctl dump-flows`` to spot the ARP flow and observe the host
+       interface through which the ARP egresses the physical machine.  You may
+       need to use ``ovs-dpctl show`` to interpret the port numbers.  If the
+       output seems surprising, you can use ``ovs-appctl ofproto/trace`` to
+       observe details of how ovs-vswitchd determined the actions in the
+       ``ovs-dpctl dump-flows`` output.
+
+    4. ``tcpdump`` the ``eth`` interface through which the ARP egresses the
+       physical machine.
+
+    5. ``tcpdump`` the ``eth`` interface through which the ARP ingresses the
+       physical machine, at the remote host that receives the ARP.
+
+    6. Use ``ovs-dpctl dump-flows`` to spot the ARP flow on the remote host
+       remote host that receives the ARP and observe the VM ``vif`` or ``tap``
+       interface to which the flow is directed.  Again, ``ovs-dpctl show`` and
+       ``ovs-appctl ofproto/trace`` might help.
+
+    7. ``tcpdump`` the ``vif`` or ``tap`` interface to which the ARP is
+       directed.
+
+    8. ``tcpdump`` the ``eth`` interface through which the ARP ingresses a VM,
+       from inside the VM.
+
+    It is likely that during one of these steps you will figure out the
+    problem.  If not, then follow the ARP reply back to the origin, in reverse.
+
+Q: How do I make a flow drop packets?
+
+    A: To drop a packet is to receive it without forwarding it.  OpenFlow
+    explicitly specifies forwarding actions.  Thus, a flow with an empty set of
+    actions does not forward packets anywhere, causing them to be dropped.  You
+    can specify an empty set of actions with ``actions=`` on the ovs-ofctl
+    command line.  For example:::
+
+        $ ovs-ofctl add-flow br0 priority=65535,actions=
+
+    would cause every packet entering switch br0 to be dropped.
+
+    You can write "drop" explicitly if you like.  The effect is the same.
+    Thus, the following command also causes every packet entering switch br0 to
+    be dropped:::
+
+        $ ovs-ofctl add-flow br0 priority=65535,actions=drop
+
+    ``drop`` is not an action, either in OpenFlow or Open vSwitch.  Rather, it
+    is only a way to say that there are no actions.
+
+Q: I added a flow to send packets out the ingress port, like this:::
+
+    $ ovs-ofctl add-flow br0 in_port=2,actions=2
+
+but OVS drops the packets instead.
+
+    A: Yes, OpenFlow requires a switch to ignore attempts to send a packet out
+    its ingress port.  The rationale is that dropping these packets makes it
+    harder to loop the network.  Sometimes this behavior can even be
+    convenient, e.g. it is often the desired behavior in a flow that forwards a
+    packet to several ports ("floods" the packet).
+
+    Sometimes one really needs to send a packet out its ingress port
+    ("hairpin"). In this case, output to ``OFPP_IN_PORT``, which in ovs-ofctl
+    syntax is expressed as just ``in_port``, e.g.:::
+
+        $ ovs-ofctl add-flow br0 in_port=2,actions=in_port
+
+    This also works in some circumstances where the flow doesn't match on the
+    input port.  For example, if you know that your switch has five ports
+    numbered 2 through 6, then the following will send every received packet
+    out every port, even its ingress port:::
+
+        $ ovs-ofctl add-flow br0 actions=2,3,4,5,6,in_port
+
+    or, equivalently:::
+
+        $ ovs-ofctl add-flow br0 actions=all,in_port
+
+    Sometimes, in complicated flow tables with multiple levels of ``resubmit``
+    actions, a flow needs to output to a particular port that may or may not be
+    the ingress port.  It's difficult to take advantage of ``OFPP_IN_PORT`` in
+    this situation.  To help, Open vSwitch provides, as an OpenFlow extension,
+    the ability to modify the in_port field.  Whatever value is currently in
+    the in_port field is the port to which outputs will be dropped, as well as
+    the destination for ``OFPP_IN_PORT``.  This means that the following will
+    reliably output to port 2 or to ports 2 through 6, respectively:::
+
+        $ ovs-ofctl add-flow br0 in_port=2,actions=load:0->NXM_OF_IN_PORT[],2
+        $ ovs-ofctl add-flow br0 actions=load:0->NXM_OF_IN_PORT[],2,3,4,5,6
+
+    If the input port is important, then one may save and restore it on the
+    stack:
+
+         $ ovs-ofctl add-flow br0 actions=push:NXM_OF_IN_PORT[],\
+             load:0->NXM_OF_IN_PORT[],\
+             2,3,4,5,6,\
+             pop:NXM_OF_IN_PORT[]
+
+Q: My bridge br0 has host 192.168.0.1 on port 1 and host 192.168.0.2 on port 2.
+I set up flows to forward only traffic destined to the other host and drop
+other traffic, like this:::
+
+    priority=5,in_port=1,ip,nw_dst=192.168.0.2,actions=2
+    priority=5,in_port=2,ip,nw_dst=192.168.0.1,actions=1
+    priority=0,actions=drop
+
+But it doesn't work--I don't get any connectivity when I do this.  Why?
+
+    A: These flows drop the ARP packets that IP hosts use to establish IP
+    connectivity over Ethernet.  To solve the problem, add flows to allow ARP
+    to pass between the hosts:::
+
+        priority=5,in_port=1,arp,actions=2
+        priority=5,in_port=2,arp,actions=1
+
+    This issue can manifest other ways, too.  The following flows that match on
+    Ethernet addresses instead of IP addresses will also drop ARP packets,
+    because ARP requests are broadcast instead of being directed to a specific
+    host:::
+
+        priority=5,in_port=1,dl_dst=54:00:00:00:00:02,actions=2
+        priority=5,in_port=2,dl_dst=54:00:00:00:00:01,actions=1
+        priority=0,actions=drop
+
+    The solution already described above will also work in this case.  It may
+    be better to add flows to allow all multicast and broadcast traffic:::
+
+        priority=5,in_port=1,dl_dst=01:00:00:00:00:00/01:00:00:00:00:00,actions=2
+        priority=5,in_port=2,dl_dst=01:00:00:00:00:00/01:00:00:00:00:00,actions=1
+
+Q: My bridge disconnects from my controller on add-port/del-port.
+
+    A: Reconfiguring your bridge can change your bridge's datapath-id because
+    Open vSwitch generates datapath-id from the MAC address of one of its
+    ports.  In that case, Open vSwitch disconnects from controllers because
+    there's no graceful way to notify controllers about the change of
+    datapath-id.
+
+    To avoid the behaviour, you can configure datapath-id manually.::
+
+        $ ovs-vsctl set bridge br0 other-config:datapath-id=0123456789abcdef
+
+Q: My controller complains that OVS is not buffering packets.
+What's going on?
+
+    A: "Packet buffering" is an optional OpenFlow feature, and controllers
+    should detect how many "buffers" an OpenFlow switch implements.  It was
+    recently noticed that OVS implementation of the buffering feature was not
+    compliant to OpenFlow specifications.  Rather than fix it and risk
+    controller incompatibility, the buffering feature is removed as of OVS 2.7.
+    Controllers are already expected to work properly in cases where the switch
+    can not buffer packets, but sends full packets in "packet-in" messages
+    instead, so this change should not affect existing users.  After the change
+    OVS always sends the ``buffer_id`` as ``0xffffffff`` in "packet-in"
+    messages and will send an error response if any other value of this field
+    is included in a "packet-out" or a "flow mod" sent by a controller.
+
+Q: How does OVS divide flows among buckets in an OpenFlow "select" group?
+
+    A: In Open vSwitch 2.3 and earlier, Open vSwitch used the destination
+    Ethernet address to choose a bucket in a select group.
+
+    Open vSwitch 2.4 and later by default hashes the source and destination
+    Ethernet address, VLAN ID, Ethernet type, IPv4/v6 source and destination
+    address and protocol, and for TCP and SCTP only, the source and destination
+    ports.  The hash is "symmetric", meaning that exchanging source and
+    destination addresses does not change the bucket selection.
+
+    Select groups in Open vSwitch 2.4 and later can be configured to use a
+    different hash function, using a Netronome extension to the OpenFlow 1.5+
+    group_mod message.  For more information, see
+    Documentation/group-selection-method-property.txt in the Open vSwitch
+    source tree.  (OpenFlow 1.5 support in Open vSwitch is still experimental.)
+
+Q: I added a flow to accept packets on VLAN 123 and output them on VLAN 456,
+like so:::
+
+    $ ovs-ofctl add-flow br0 dl_vlan=123,actions=output:1,mod_vlan_vid:456
+
+but the packets are actually being output in VLAN 123.  Why?
+
+    A: OpenFlow actions are executed in the order specified.  Thus, the actions
+    above first output the packet, then change its VLAN.  Since the output
+    occurs before changing the VLAN, the change in VLAN will have no visible
+    effect.
+
+    To solve this and similar problems, order actions so that changes to
+    headers happen before output, e.g.:::
+
+        $ ovs-ofctl add-flow br0 dl_vlan=123,actions=mod_vlan_vid:456,output:1
+
+Q: The "learn" action can't learn the action I want, can you improve it?
+
+    A: By itself, the "learn" action can only put two kinds of actions into the
+    flows that it creates: "load" and "output" actions.  If "learn" is used in
+    isolation, these are severe limits.
+
+    However, "learn" is not meant to be used in isolation.  It is a primitive
+    meant to be used together with other Open vSwitch features to accomplish a
+    task.  Its existing features are enough to accomplish most tasks.
+
+    Here is an outline of a typical pipeline structure that allows for
+    versatile behavior using "learn":
+
+    - Flows in table A contain a "learn" action, that populates flows in table
+      L, that use a "load" action to populate register R with information about
+      what was learned.
+
+    - Flows in table B contain two sequential resubmit actions: one to table L
+      and another one to table B+1.
+
+    - Flows in table B+1 match on register R and act differently depending on
+      what the flows in table L loaded into it.
+
+    This approach can be used to implement many "learn"-based features.  For
+    example:
+
+    - Resubmit to a table selected based on learned information, e.g. see:
+      http://openvswitch.org/pipermail/discuss/2016-June/021694.html
+
+    - MAC learning in the middle of a pipeline, as described in `the tutorial
+      <tutorial/Tutorial.md>`__.
+
+    - TCP state based firewalling, by learning outgoing connections based on
+      SYN packets and matching them up with incoming packets.
+
+    - At least some of the features described in T. A. Hoff, "Extending Open
+      vSwitch to Facilitate Creation of Stateful SDN Applications".
+
+Development
+-----------
+
+Q: How do I implement a new OpenFlow message?
+
+    A: Add your new message to ``enum ofpraw`` and ``enum ofptype`` in
+    ``lib/ofp-msgs.h``, following the existing pattern.  Then recompile and fix
+    all of the new warnings, implementing new functionality for the new message
+    as needed.  (If you configure with ``--enable-Werror``, as described in the
+    `installation guide <INSTALL.rst>`__, then it is impossible to miss any
+    warnings.)
+
+    If you need to add an OpenFlow vendor extension message for a vendor that
+    doesn't yet have any extension messages, then you will also need to edit
+    ``build-aux/extract-ofp-msgs``.
+
+Q: How do I add support for a new field or header?
+
+    A: Add new members for your field to ``struct flow`` in ``lib/flow.h``, and
+    add new enumerations for your new field to ``enum mf_field_id`` in
+    ``lib/meta-flow.h``, following the existing pattern.  Also, add support to
+    ``miniflow_extract()`` in ``lib/flow.c`` for extracting your new field from
+    a packet into struct miniflow, and to ``nx_put_raw()`` in
+    ``lib/nx-match.c`` to output your new field in OXM matches.  Then recompile
+    and fix all of the new warnings, implementing new functionality for the new
+    field or header as needed.  (If you configure with ``--enable-Werror``, as
+    described in the `installation guide <INSTALL.rst>`__, then it is impossible
+    to miss any warnings.)
+
+    If you want kernel datapath support for your new field, you also need to
+    modify the kernel module for the operating systems you are interested in.
+    This isn't mandatory, since fields understood only by userspace work too
+    (with a performance penalty), so it's reasonable to start development
+    without it.  If you implement kernel module support for Linux, then the
+    Linux kernel "netdev" mailing list is the place to submit that support
+    first; please read up on the Linux kernel development process separately.
+    The Windows datapath kernel module support, on the other hand, is
+    maintained within the OVS tree, so patches for that can go directly to
+    ovs-dev.
+
+Q: How do I add support for a new OpenFlow action?
+
+    A: Add your new action to ``enum ofp_raw_action_type`` in
+    ``lib/ofp-actions.c``, following the existing pattern.  Then recompile and
+    fix all of the new warnings, implementing new functionality for the new
+    action as needed.  (If you configure with ``--enable-Werror``, as described
+    in the `installation guide <INSTALL.rst>`__, then it is impossible to miss
+    any warnings.)
+
+    If you need to add an OpenFlow vendor extension action for a vendor that
+    doesn't yet have any extension actions, then you will also need to edit
+    ``build-aux/extract-ofp-actions``.
diff --git a/INSTALL.Fedora.md b/INSTALL.Fedora.md
index 028a992..d2e55b2 100644
--- a/INSTALL.Fedora.md
+++ b/INSTALL.Fedora.md
@@ -108,7 +108,7 @@ installation requires superuser privileges.
 
 The openvswitch-kmod RPM should be installed first if the Linux OVS tree datapath
 module is to be used. The openvswitch-kmod RPM should not be installed if
-only the in-tree Linux datapath or user-space datapath is needed. See [FAQ.md]
+only the in-tree Linux datapath or user-space datapath is needed. See [FAQ.rst]
 for more information about the various Open vSwitch datapath options.
 
 In most cases only the `openvswitch` RPM will need to be installed. The
@@ -126,5 +126,5 @@ Reporting Bugs
 Please report problems to bugs at openvswitch.org.
 
 [INSTALL.rst]:INSTALL.rst
-[FAQ.md]:FAQ.md
+[FAQ.rst]:FAQ.rst
 [README.RHEL]:rhel/README.RHEL
diff --git a/INSTALL.rst b/INSTALL.rst
index 055f201..bc290b7 100644
--- a/INSTALL.rst
+++ b/INSTALL.rst
@@ -76,7 +76,7 @@ need the following software:
 
 On Linux, you may choose to compile the kernel module that comes with the Open
 vSwitch distribution or to use the kernel module built into the Linux kernel
-(version 3.3 or later). See the `FAQ <FAQ.md>`__ question "What features
+(version 3.3 or later). See the `FAQ <FAQ.rst>`__ question "What features
 are not available in the Open vSwitch kernel datapath that ships as part of the
 upstream Linux kernel?" for more information on this trade-off. You may also
 use the userspace-only implementation, at some cost in features and performance
@@ -274,7 +274,7 @@ example, to build for a running instance of Linux::
 .. note::
   If ``--with-linux`` requests building for an unsupported version of Linux,
   then ``configure`` will fail with an error message. Refer to the `FAQ
-  <FAQ.md>`__ for advice in that case.
+  <FAQ.rst>`__ for advice in that case.
 
 If you wish to build the kernel module for an architecture other than the
 architecture of the machine used for the build, you may specify the kernel
diff --git a/Makefile.am b/Makefile.am
index ca19ec5..d47129c 100644
--- a/Makefile.am
+++ b/Makefile.am
@@ -69,7 +69,7 @@ docs = \
 	CONTRIBUTING.rst \
 	CodingStyle.rst \
 	DESIGN.rst \
-	FAQ.md \
+	FAQ.rst \
 	INSTALL.rst \
 	INSTALL.Debian.rst \
 	INSTALL.Docker.rst \
diff --git a/README.rst b/README.rst
index b96ba1c..b8e569a 100644
--- a/README.rst
+++ b/README.rst
@@ -98,7 +98,7 @@ To use Open vSwitch...
 
 - ...with SELinux, see `here <INSTALL.SELinux.md>`__.
 
-For answers to common questions, refer to the `FAQ <FAQ.md>`__.
+For answers to common questions, refer to the `FAQ <FAQ.rst>`__.
 
 To learn how to set up SSL support for Open vSwitch, see `here
 <INSTALL.SSL.md>`__.
diff --git a/debian/openvswitch-common.docs b/debian/openvswitch-common.docs
index 950e78c..c5612dd 100644
--- a/debian/openvswitch-common.docs
+++ b/debian/openvswitch-common.docs
@@ -1,3 +1,3 @@
-FAQ.md
+FAQ.rst
 INSTALL.DPDK.rst
 README-native-tunneling.rst
diff --git a/rhel/openvswitch-fedora.spec.in b/rhel/openvswitch-fedora.spec.in
index 00b40ea..5662edd 100644
--- a/rhel/openvswitch-fedora.spec.in
+++ b/rhel/openvswitch-fedora.spec.in
@@ -479,7 +479,7 @@ fi
 %{_mandir}/man8/ovs-parse-backtrace.8*
 %{_mandir}/man8/ovs-testcontroller.8*
 %doc COPYING DESIGN.rst INSTALL.SSL.md NOTICE README.rst WHY-OVS.rst
-%doc FAQ.md NEWS INSTALL.DPDK.rst rhel/README.RHEL
+%doc FAQ.rst NEWS INSTALL.DPDK.rst rhel/README.RHEL
 /var/lib/openvswitch
 /var/log/openvswitch
 %ghost %attr(755,root,root) %{_rundir}/openvswitch
diff --git a/rhel/openvswitch.spec.in b/rhel/openvswitch.spec.in
index 015043b..b40ede2 100644
--- a/rhel/openvswitch.spec.in
+++ b/rhel/openvswitch.spec.in
@@ -247,7 +247,7 @@ exit 0
 /usr/share/openvswitch/scripts/sysconfig.template
 /usr/share/openvswitch/vswitch.ovsschema
 /usr/share/openvswitch/vtep.ovsschema
-%doc COPYING DESIGN.rst INSTALL.SSL.md NOTICE README.rst WHY-OVS.rst FAQ.md NEWS
+%doc COPYING DESIGN.rst INSTALL.SSL.md NOTICE README.rst WHY-OVS.rst FAQ.rst NEWS
 %doc INSTALL.DPDK.rst rhel/README.RHEL README-native-tunneling.rst
 /var/lib/openvswitch
 /var/log/openvswitch
-- 
2.7.4




More information about the dev mailing list